Identifying State Coding Conflicts in Asynchronous System Specifications Using Petri Net Unfoldings

Alex Kondratyev
The University of Aizu, Japan

Jordi Cortadella
Universitat Politècnica de Catalunya, Spain

Michael Kishinevsky
The University of Aizu, Japan

Luciano Lavagno
Politecnico di Torino, Italy

Cadence Berkeley Labs, USA

Alexander Taubin
The University of Aizu, Japan

Alex Yakovlev
University of Newcastle upon Tyne, UK

Abstract

State coding conflict detection is a fundamental part of synthesis of asynchronous concurrent systems from their specifications as Signal Transition Graphs (STGs), which are a special kind of labelled Petri nets. The paper develops a method for identifying state coding conflicts in STGs that is intended to work within a new synthesis framework based on Petri net unfolding. The latter offers potential advantages due to a partial order representation of highly concurrent behaviour as opposed to the more traditional construction of a state graph, known to suffer from combinatorial explosion. We develop a necessary condition for coding conflicts to exist, by using an approximate state covering approach. Being computationally easy, yet conservative, such a solution may produce fake conflicts. A technique for refining the latter, with extra computational cost, is provided.

1 Introduction

There exists a variety of approaches to synthesis of speed independent circuits from their formal behavioural specifications. One of the most popular specification languages is Signal Transition Graphs (STGs) that are Petri nets (PNs) whose transitions are labelled with the names of rising and falling edges of circuit signals \[2, 18\]. Circuit synthesis methods based on STGs can be classified into two major groups. The first group includes those based on a State Graph (SG), which is the Reachability Graph (RG) of an STG (strictly speaking of the PN underlying the STG) encoded with binary vectors corresponding to the states of signals in every reachable marking. This approach is used in existing software tools for asynchronous circuit synthesis such as SIS \[20\] and Petrify \[3\]. The actual process of circuit implementation involves direct construction of the full reachable state space, which then provides logic minimisation routines with the information about On, Off and Don’t care sets for each non-input signal. An obvious practical limitation of this approach is potential combinatorial growth of the number of reachable states. The use of symbolic techniques, such as Binary Decision Diagrams (BDDs), sometimes yields a more efficient
representation of the binary encoded states [3] but does not remove the root of the complexity issue.

A second approach attempts to avoid construction of the full reachable state space; it includes techniques either based on structural analysis of STGs [16] or use of PN unfoldings [11, 19]. The structural method of [16] has given rise to the idea of an approximation-based synthesis of the logic implementation of an STG. Albeit efficient in many practical cases, it is restricted to only handling a sub-class of PNs – free-choice nets [4]. The attempt to generalise it within the framework of unfolding presented in [19] has proved to be quite promising in dealing with large STG models.

In particular, unfoldings exploit the nature of practical asynchronous specifications, that suffer much more from state explosion due to concurrency than due to conflict. STGs generally also exhibit a “regular” interaction between the two, thus avoiding the pathological cases in which the unfolding performs as poorly as traditional state exploration (or even worse that state exploration, due to the larger constant factors in the complexity of the algorithmic implementations).

The main shortcoming of the method of [19], however, was that its approximation and refinement strategy was fairly straightforward and could not work well with the Don’t care state sets, i.e. sets of states which would have been unreachable if the exact reachability analysis was applied. In particular, if two approximation cubes were intersecting on the unreachable states, the only way to confront this problem was to construct the corresponding states to see whether this intersection was dangerous or not. The construction (or refinement) procedure suggested in [19] was inefficient and caused an explosion in the number of cubes obtained during the refinement.

With the increasing popularity of STGs and associated synthesis tools, there is a clear need for further development of the partial order approach to asynchronous circuit synthesis. We do not attempt to tackle at once all the issues involved, since this subject requires developing a considerable amount of new theory. This paper therefore aims at improving the synthesis method based on unfoldings in its particularly critical part: to find a more accurate way of determining actual coding collisions in the STG unfolding. Such conflicts are tentatively identified by means of a conservative estimation of the state space, via place cover cubes. Some of these conflicts may not be actual CSC conflicts, thus leading to the two main contributions of the paper:

1. Conditions to determine whether a particular state coding conflicts is fake (Section 3). From the computational point of view, these conditions are relatively easy to check, but they are necessary and not sufficient, which may require further refinement if the designer is prepared to use a more complex procedure.

2. An algorithmic method for the partial construction of the state space when the “fast” techniques from Section 3 fail (Section 4). This method is based on solving the problem of calculating the part of the STG unfolding whose states (unfolding cuts) evaluate a given boolean cover cube to true. This problem has its own specific value in the list of issues that need to be tackled for a more thorough understanding of the “boolean properties” of partial order behavioural specifications.

The role played by this paper in defining the state of art in asynchronous design techniques is illustrated by the “maps” in Figure 1. They show intuitively which tasks of the overall design cycle are tackled and solved here.

2 Background

This section introduces the basic concepts required for describing the new method. These include: (i) models, such as Signal Transition Graph, State Graph, Unfolding; (ii) target properties, such
as Complete State Coding, CSC conflicts; (iii) important notions supporting the method, such as unfolding cuts, slices, marked regions, approximation cubes.

2.1 Signal Transition Graph and State Coding Problems

A Petri net (PN) is a quadruple \(PN = (P, T, F, m_o)\), with sets of places \(P\), transitions \(T\), flow relation \(F\) and initial marking \(m_o\). A marking \(m\) is represented with a number of tokens \(m(p)\) in each place \(p \in P\). A Signal Transition Graph (STG) \([18, 2]\) is a triple \(N = \langle PN, A, \lambda \rangle\), where \(PN\) is a PN, \(A = I \cup O\) is a set of signals partitioned into input and output signals, and \(\lambda : T \rightarrow A \times \{+, -\}\) is a labelling function that assigns a signal edge name to each transition in \(T\). An STG is thus a labelled PN, specialised to describing the behaviour of asynchronous circuits at the logic level. The set of transitions represents signal changes, i.e. their rising \((a_i+)\) and falling \((a_i-)\) edges. Notation \(a_i^*\) is used to indicate a signal transition regardless of the direction of the change. Given a Petri net element \(x \in T \cup P\), its predecessors and successors sets are denoted \(\bullet x\) and \(x\bullet\) respectively. We further assume that for any transition \(t \in T : \bullet t \neq \emptyset\) and \(t\bullet \neq \emptyset\). A PN in which every transition has at most one predecessor and one successor is called a State Machine.

An STG is called \(k\)-bounded iff the number of tokens in any place \(p \in P\) at any reachable marking does not exceed \(k\). Boundedness guarantees that an STG can be implemented using a finite number of memory elements. An STG is called output signal persistent \([10]\) iff no output signal transition \(a_i^*\) excited at any reachable marking can be disabled by transition of another signal \(a_j^*\). If an STG is output signal persistent, then can be implemented without producing unspecified changes of the output signals; that is, without introducing hazards\([9]\).

To obtain an implementation for an STG, most of the existing synthesis techniques require building a State Graph (SG). The SG is derived from the graph of reachable markings (RG),
constructed for the STG using either explicit [17] or symbolic traversal [15] methods, and then assigning a binary code \(v \in \{0, 1\}^n \), \(n = |A| \), to each reachable marking \(m \)\(^1\). Thus an SG is a triple \(SG = (S, E, \gamma) \), where \(S \) is a set of binary encoded states \(s = (m, v) \), \(E \) is a set of transitions between the states, and \(\gamma : E \to A \times \{+, -\} \) is function that labels the arcs between states with signal transitions. In order to allow a meaningful interpretation of the SG model as the behaviour of an asynchronous circuit, the binary codes \(v \) must be assigned to their markings \(m \) consistently, i.e.

- every arc between two states \(s_1 = (m_1, v_1) \) and \(s_2 = (m_2, v_2) \) is labelled with exactly one signal transition \(a_i \),
- if the arc \((s_1, s_2)\) is labelled \(a_i \) then \(v_1[1] = 0(1) \) and \(v_2[1] = 1(0) \).

An STG is called consistent if its SG has a consistent state assignment.

Whilst at the level of the STG model, the states are represented by pairs, marking and state code, at the circuit level, only their binary codes will be represented. Thus it may be possible that two states of an STG that have different markings and are semantically different (they generate different behaviour in terms of firing transition sequences) but have equal binary codes will be indistinguishable at the circuit level. This situation will be called a coding or CSC conflict in the following. The Complete State Coding (CSC) condition introduced in [2] requires any two states with equal binary codes to have the same set of excited output signals. If for some signal \(a_i \) this requirement is not satisfied, then it is impossible to extract the boolean function for its implementation.

An STG model satisfying the conditions of boundedness, consistency, output signal persistently, and producing a SG with CSC is known to be implementable [10] as a speed-independent logic circuit \(^2\). An implementable STG gives rise to truth tables, which can be obtained from the SG state codes for each output signal. The implementation is obtained from the truth tables by building cover functions, which are then directly associated with the circuit elements. This was the so-called complex gate implementation. In this paper we assume such an implementation to be the target of synthesis, and thus consider only coding conflicts related to this basic form.

A boolean function covers a state \(s = (m, v) \) if the function evaluates to true when the variables have their values equal to the signals at the binary code \(v \). A function covering a set of states is called a cover function (or simply cover). Each product term of the cover is associated with a cube which may cover several states (commonly associated with min-terms) in the state space.

Example 2.1 (The "xyz" example.) Consider the STG and its SG shown in Figure 2a,b. This STG is bounded, consistent and output-persistent (assuming that all signals \(x, y \) and \(z \) are outputs); it satisfies the CSC property since each reachable state has a unique state encoding (shown next to the marking). An example of a cover function is: \((x + z)\overline{y}\) (we will often use an alternative Boolean vector notation \(10 - \overline{1} - 01\), assuming signal ordering \(xyz \)), which covers the set of states:

\[
\{(p^2p^3; 100), (p^4p^3, 101), (p^6p^3; 001)\}.
\]

\(^1\)In general one marking of an STG can correspond to a few binary codes. It can happen for example if two-phase signal transitions are allowed or due to a few different initial paths leading to same place of an STG. However, any STG can be converted to an equivalent STG with single binary code for each marking. Therefore, in this paper we consider only such STGs.

\(^2\)Circuits whose behaviour is independent of the delays in logic gates; such circuits are known to be free from hazards under the unbounded delay model.

2.2 STG unfoldings and their role in synthesis

Checking whether a particular STG is implementable in complex gates is a crucial step in speed-independent circuit synthesis. To be able to synthesise circuits from large STGs we would like to avoid using explicit state enumeration techniques. A compact representation of STG state space is provided by Petri net unfolding [13]. It is known that its finite fragment, a truncated unfolding [13], completely represents the entire reachability graph of the PN. Techniques for analysis of boundedness, consistency and output-persistency of STGs using unfoldings have been developed elsewhere, e.g. [11]. Those conditions could be easily interpreted in terms of ordering relations (concurrency, conflict and precedence) between the unfolding elements. The situation with the CSC condition, which is related to the problem of binary state encoding, is different. To be able to check this condition, one needs a way to capture state encoding information from the STG unfolding.

One such possible way was suggested in [19], within a general framework for synthesis of speed-independent circuits from unfoldings. It was based on the idea of finding approximated boolean covers for instances of places and transitions [16].

An exact cover for a given set of states \(S' \) can be obtained directly from the set of binary codes \(S' \), but it will require an explicit enumeration of all the states. Generating exact covers is very costly due to the exponential number of states that may contain highly concurrent STGs — this is known as the state explosion problem. To overcome this, approximated covers can be generated using some structural information from the STG, and therefore avoiding the state generation [16, 19]. However, implementations created by using approximated covers require additional checking for its correctness. One such condition for complex gate implementation is that the cover for the part of the state space where the function is on (ON-set cover) must not intersect with the cover where the function is off (OFF-set cover). If such intersection is non-empty, the synthesis process must refine the covers, until they become exact in the worst case. As a matter of fact, it was pointed out in [19] that the situation when the exact covers for ON-set and OFF-set have a nonempty intersection precisely corresponds to the case of a CSC problem.

The technique for generating and refining approximated covers proposed in [19] was quite straightforward. It did not take into account that the intersection of the ON-set and OFF-set covers for a signal could be on the set of unreachable states, corresponding to the DC(Don't Care)-set. Therefore, the fact that the ON-set and OFF-set covers have nonempty intersection cannot say precisely whether the STG has a CSC conflict or not. In the latter case we shall say that the CSC conflict is fake.

In order to tackle the problem of checking the CSC condition in the STG unfolding, we apply some of the concepts used in the unfolding theory. First, the concept of an STG-unfolding is outlined. Then, we introduce the notions of cuts [5] and slices [19] which allows us to capture the corresponding notions in the SG, namely states and connected subsets (regions) of states. Cuts and slices will thus provide us with an important link with the state coding information. The latter is represented in the form of boolean cubes (and covers) associated with the unfolding elements.

2.2.1 STG unfolding

An STG unfolding\(^3\) built for an STG \(N \), is an acyclic STG \(N' = (T', P', F', \Lambda) \) where \(T', P' \) and \(F' \) are sets of transitions, places and the flow relation, respectively; and \(\Lambda \) is a labelling function

\(^3\)We apply term unfolding to the notion of the “truncated unfolding” for simplicity, under the assumption that the STG is bounded and such a truncation is possible [13].
which labels each element of N' as an instance of elements of N. N' is a partial order obtained from an STG N by the process of its unfolding [13, 6, 11]. We tacitly assume that unfolding N' inherits the signal transition labelling of its STG origin N.

Note. To distinguish the elements of the PN (or STG) unfolding from those of the original PN (STG) we will always refer to the former by adding one or several primes (p', t'', ...) while the objects of the latter are denoted simply by p, t, etc.

In the STG unfolding the relations of conflict, concurrency and precedence are used to decide where to instantiate the next element. These relations are constructed during the unfolding process from the basic flow relation F', built from the flow relation F of the original STG. For any pair of instances $x'_1, x'_2 \in P' \cup T'$ in the unfolding three relations are defined:

- **Precedence**, denoted as $x'_1 \Rightarrow x'_2$, iff (x'_1, x'_2) belongs to the reflexive transitive closure of F', i.e., there is a path in the graph of an unfolding between x'_1 and x'_2.

- **Conflict**, denoted as $x'_1 \# x'_2$, iff there exist two distinct transitions t'_1 and t'_2 such that $t'_1 \cap t'_2 \neq \emptyset$, and $t'_1 \Rightarrow x'_1$, and $t'_2 \Rightarrow x'_2$.

- **Concurrency**, denoted as $x'_1 \| x'_2$, iff x'_1 and x'_2 are neither in precedence, nor in conflict.

In contrast to PN unfolding [13, 6], the STG unfolding preserves the signal interpretation of the PN transitions and keeps track of the binary codes reached by transition firing. However, it explicitly represents only a subset of all reachable states of N (called basic states in [12]) and thus is typically more compact than SG. The set of predecessor transitions of t' of the STG unfolding is called the local configuration of t' and is denoted as $\Rightarrow t'$.

The set of place instances reached by firing all transitions in $\Rightarrow t'$ is called postset of $\Rightarrow t'$ and is denoted by $(\Rightarrow t')^\bullet$. Mapping a postset onto places of the original STG produces a marking of the original STG, called a basic marking (unlike the reachability graph, the unfolding represents only basic markings) and denoted as $m(\Rightarrow t')$. Any non-conflicting and transitively closed (w.r.t. the precedence relation) subset of transitions $T1' \subseteq T'$ is called a configuration. It is clear that a configuration is a union of local configurations of the transitions that are maximal (w.r.t. the precedence relation) in the configuration.

Each instance t' of the STG unfolding has a binary code $v(\Rightarrow t')$ which is reached by firing transitions in $\Rightarrow t'$. The postset $(\Rightarrow T1')^\bullet$ and binary code $v(\Rightarrow T1')$ corresponding to a configuration $T1'$ are calculated from $(\Rightarrow t')^\bullet$ and $v(\Rightarrow t')$ of the max-transitions t' of this configuration. The pair $(m(\Rightarrow t'), v(\Rightarrow t'))$ is called the final state of the local configuration $\Rightarrow t'$. Similarly, we can denote the final state of a configuration $(m(\Rightarrow T1'), v(\Rightarrow T1'))$, which always corresponds to one of the reachable markings. It has been known that all markings of the STG are represented in the STG unfolding as post-sets of some configuration [13], and this is easily generalized for all states of the SG [11].

The process of constructing the STG unfolding (which is a finite object for a bounded PN) is terminated at the transition instances called cut-off points, whose final state is equal to the final state of some other instance already put into the unfolding. There exist several definitions of the cut-off condition [13, 6, 11], different in their attempts to minimize the size of the truncated PN (or STG) unfolding necessary to fully represent the SG.

The initial state of the STG is associated with an imaginary initial transition in the unfolding, whose postset is the set of place instances of the places involved in the initial marking.

2.2.2 Cuts and slices of STG unfolding

To represent a state of the SG we define a cut in the unfolding [5].
Definition 2.1 A cut of an STG unfolding is a maximal set of mutually concurrent places \(p' \in P' \).

Each cut \(m' \in P' \) thus represents a reachable marking \(m = \Lambda(m') \) of the original STG. Due to the acyclic nature of the PN unfolding (recall that we are talking about the fragment of the unfolding truncated at its cutoff transitions) it may cover some markings more than once, i.e. several cuts may map to the same marking. Due to the main property of the STG unfolding to be representative of all reachable states, for every reachable state in an STG there is a cut in the STG unfolding. Thus, similar to markings, each cut \(m' \in P' \) is also associated with a binary code \(v(m') \) of the marking \(m = \Lambda(m') \).

Ordering relations can be defined between cuts in the following way:

- **Precedence**, \(m1' \Rightarrow m2' \) iff \(\forall p1' \in m1' \exists p2' \in m2' \), \(p1' \Rightarrow p2' \). Note that relation \(\Rightarrow \) for cuts is reflexive due to reflexivity of \(\Rightarrow \) for places of an unfolding.
- **Conflict**, \(m1' \# m2' \) iff \(\exists p1', p2', p1' \in m1', p2' \in m2' \) and \(p1' \neq p2' \).
- **Coexistence**, \(m1'||m2' \) iff neither \(m1' \Rightarrow m2' \) nor \(m1' \# m2' \)

Since a cut \(m' \) represents a reachable state \(s = (\Lambda(m'), v(m')) \), there exists a configuration \(T1' \) such that \(s = (m' (\Rightarrow T1'), v(\Rightarrow T1')) \). We shall call such \(T1' \) the configuration of cut \(m' \), and denote it by \(m' \). In particular, the empty configuration corresponds to the initial cut of the unfolding. Conversely, for configuration \(T1' = (\Rightarrow m') \) the cut \(m' \) will be called the final cut of configuration \(T1' \). The precedence and coexistence relations involve cuts whose configurations do not contain conflict transitions. The conflict relation is between cuts whose configurations include at least a pair of transitions, one from each configuration, which are in conflict (and hence are not confluent).

We need also to rephrase the notion of CSC in terms of cuts.

Definition 2.2 Two cuts \(m1' \) and \(m2' \) are said to be in CSC conflict iff \(v(m1') = v(m2') \) and they enable different transitions of output signals.

To represent a mutually connected set of states we use the notion of a slice.

Definition 2.3 A slice \(S = \langle \bullet S, \{S\bullet\} \rangle \) is a set of unfolding cuts defined by a cut, \(\bullet S \), called min-cut and a set of cuts \(\{S\bullet\} \) called max-cuts, which satisfy the following conditions:

- (1) **Min-max correspondence**. For any max-cut \(S\bullet : \bullet S \Rightarrow S\bullet \) (the min-cut is backward reachable from any max-cut).
- (2) **Conflict of max-cuts**. All max-cuts in \(\{S\bullet\} \) are in conflict\(^4\).
- (3) **Containment**. If cut \(m' \in S \), then there is a max-cut \(S\bullet \) such that:
 \[\bullet S \Rightarrow m' \Rightarrow S\bullet \] (any cut of a slice is squeezed between a min-cut and some max-cuts).
- (4) **Closure**. If cut \(m' \) is such that \(\bullet S \Rightarrow m' \Rightarrow S\bullet \in \{S\bullet\} \), then \(m' \in S \) (there are no ‘gaps’ in a slice).

\(^4\)A more general definition of a slice, requiring max-cuts not to be in precedence, has been used in [19].
Conditions 1 and 2 guarantee well-formedness of the slice borders; conditions 3 and 4 guarantee containment and contiguity of a slice. Note that due to the reflexivity of \(\Rightarrow \) relation on cuts, conditions (4) and (1) imply that the min and the max cuts are part of a slice.

It is easy to see that the entire (truncated) STG unfolding is a special case of a slice. Other special kinds of slices can be defined in the STG unfolding as follows.

The marked region for a place instance \(p' \in P' \) is the set of cuts to which \(p' \) belongs. It is easy to see that a marked region for a finite unfolding is a slice. Therefore, for the place \(p' \) we denote it as \(S(p') \) (an alternative name is a place slice). This definition can be extended to a set of mutually concurrent place instances \(P_1' \subseteq m' \), where \(m' \) is a cut; the marked region of \(P_1' \) is also a slice, denoted by \(S(P_1') \).

Due to the binary encoding associated with every cut in an STG unfolding, each slice can be assigned a boolean cover obtained as the sum of minterms corresponding to the cuts contained in the slice. Further in Section 4 we shall define the notion of a cube slice, a slice which can be obtained for a given cube in such a way that the cube evaluates to true in all cuts of that slice and in false in all cuts outside the slice.

Our discussion of coding conflicts in an STG unfolding will require the concept of a boolean cover approximation for individual places.

Consider an arbitrary place instance \(p' \in P' \). Let \(t' = \bullet p' \), i.e. let \(t' \) be the unique (due to the non-reconvergent nature of unfoldings with respect to places) predecessor transition, and let \(v(\Rightarrow t') \) denote the binary code of the final state of the local configuration of \(t' \).

Definition 2.4 The cover approximation of place \(p' \) is the cube \(C(p') = c[1]c[2] \ldots c[n] \), where \(n = \lvert A \rvert \) is the number of signals in the STG, and \(\forall i : c[i] \in \{0, 1, \neg\} \), computed as follows:

- \(c[i] = "\neg" \) if \(\exists a_i * \) such that \(a_i * \parallel p' \), and
- \(c[i] = v(\Rightarrow t')(i) \), otherwise.

The approximate cover defined above is a cube derived only by knowing local configurations of unfolding transitions and the concurrency relation between places and transitions, all information that can be derived in polynomial time from the unfolding. On the other hand, the exact cover of a place \(p' \) is the boolean cover of the set of cuts in place slice \(S(p') \). It should be obvious that the exact cover is a subset of the approximate cover, since the approximate cover assumes that transitions concurrent to \(p' \) are all mutually concurrent, and hence that all their immediate predecessor and successor place instances can be marked in any combination. The containment is strict, except in the case in which no pair of transitions concurrent to a place is ordered or in conflict

We are now ready to consider the problem of detecting CSC conflicts using information available from an STG unfolding. The key point to avoid the complete state traversal is that the information about the state codes in the unfolding will be obtained only from place cube approximations. The next section develops a necessary condition for CSC by using this compact representation.

Example 2.2 (The "xyz" example.) Consider the STG and its unfolding shown in Figures 2, a and c, respectively. Transition \(y' \) is the only cut-off transition. An example of a local configuration, for \(x -' \) is the set \(\{x+, z+, x-\} \), whose final cut is \(p6'p3' \). While an example of a non-local configuration is the set \(\{x+, z+, y+\} \) Its final cut is \(p4'p5' \). An example of a slice is defined by the min-cut \(p2'p3' \) and a max-cut set consisting of cut \(p6'p3' \). This slice has the exact cover: \(1 - - \cup 0 - 1 \) (again with signal order xyz). The approximate place covers are shown in the

5This case is relatively rare in practice, except in the special case of so-called burst-mode specifications [14].
unfolding next to their place instances. Place p^3' is concurrent to transitions z^+' and z^-' and is ordered with the transitions of y, hence the cover approximation for this place is $-0-$. The exact cover of the place slice $S(p^3') = \{10-, -01\}$.

3 Detection of CSC conflicts by unfolding

A conservative check for CSC conflicts can be done based on place cover approximations.

Definition 3.1 Places p^1' and p^2' are said to be in collision in an STG unfolding if their cover approximations intersect, i.e. $C(p^1') \cap C(p^2') \neq \emptyset$.

There are three sources of collisions between places p^1' and p^2' in an unfolding:

Case 1. The marked regions of places p^1' and p^2' contain only cuts that map to the same marking of the original STG (i.e., there is no CSC conflict).

Case 2. In the marked regions of places p^1' and p^2' there are two cuts that albeit mapped to two different markings have the same binary encoding. This may or may not be a CSC conflict, depending on whether these markings enable different or identical sets of output signals.

Case 3. The exact boolean covers of the marked regions of p^1' and p^2' do not contain the same binary codes but the place cover approximations $C(p^1')$ and $C(p^2')$ intersect due to an overestimation. This is called a fake collision and does not correspond to a CSC conflict.

The idea of approximate techniques in detecting CSC conflicts is to consider collisions (which can be easily analyzed) instead of actual CSC conflicts. However such a consideration can be overly conservative because actually we are interested only in collisions for Case 2 above, while Cases 1 and 3 must be excluded.

Definition 3.2 A collision between places p^1' and p^2' is called fake if no cut in the marked region of p^1' is in CSC conflict with cuts from the marked region of p^2'.

To make analysis of coding conflicts by collisions between places less conservative, we need to identify as many fake conflicts as possible.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{approximation_technique_for_xyz_example.pdf}
\caption{Approximation technique for xyz example}
\end{figure}
Example 3.1 (The "xyz" example.) Consider again the STG and its unfolding shown in Figure 2,a,c. The cover approximation for place p_3' is 0- (signal order is xyz). This cube intersects with the corresponding cubes for places p_1, p_2, p_4, p_6 and thus has collisions with p_1, p_2, p_4, p_6. The SG for the xyz example is known to be free of CSC conflicts, therefore all these collisions are fake.

Definition 3.3 A directed path e_1', \ldots, e_n' over unfolding nodes (places or transitions) is called maximal if there is no node e' in the unfolding such that either $e' \rightarrow e_1'$ or $e_n' \rightarrow e'$.

Informally a maximal path is a path that cannot be extended in the unfolding, it starts at one of its initial places and ends either at a cutoff transition or at a place without output arcs.

Definition 3.4 A directed tree $^6 L' = \{e_1', \ldots, e_n'\}$ over unfolding nodes is called maximal iff:
1. every e_i' belongs to a maximal path formed by the tree nodes,
2. for any place $p' \in L'$ every $t' \in p'$ belongs to L',
3. for any transition $t' \in L'$ only one place $p' \in t'$ belongs to L'.

Informally, maximal trees play the same role in unfoldings as State Machine components do in Free-Choice PN's [7, 4]. Specifically, they identify sets of place instances that can never be marked together (because they are ordered or in conflict), and whose marked regions contain all reachable cuts of an unfolding.

Proposition 3.1 A maximal tree contains no concurrent places.

Proof: The proof can be done by induction on the depth of a tree. A tree has a unique root and hence any maximal tree contains only one initial place of an unfolding. This gives the basis of induction.

The induction step easily follows from the rule of tree construction: for a tree with depth i, (1) either by Condition 2 of Definition 3.4 only conflicting transitions can be added to produce a tree with depth $i+1$ or (2) by Condition 3 at most one output place of a transition can be added. Clearly in both cases no place can appear at the $i+1$ layer of a tree which is concurrent to any other place. □

A maximal tree represents a maximal fragment of an unfolding without concurrency. Figure 3,b shows an example of a maximal tree in the STG unfolding of Figure 3,a. There is one more maximal tree in this unfolding given by the set of nodes: $\{p_0', p_8', p_7'\}$.

Proposition 3.2 Let P' be a set of places of a maximal tree in an unfolding N' and let M' be the union of all cuts in the marked regions of places from P'. Then M' contains all reachable cuts of unfolding N'.

Proof: Suppose there is a cut m' reachable in N' which does not belong to M'. Every reachable cut in N' is the final cut of some configuration $C' \in T'$, i.e. $C' = (\Rightarrow m')$. The proof is further built by induction on the size of C' bearing in mind that P' contains a place which must be in the initial cut (for the induction base). To make the induction step let us show that for any cut $m' \in M'$ its immediate successor m_1', $m' \rightarrow m_1'$ also belongs to M'.

^6 We use the standard definition of a directed tree; see e.g. [1].

^7 When no ambiguity arises we will refer to maximal trees by their place nodes only.
Figure 3: SG with CSC conflict a) its STG b) and unfolding c)

1. If transition t' consumes some of the places from P', then, due to the maximal tree construction, t' would have at least one successor place that will belong to P', thereby guaranteeing that the next cut $m1'$ is also in M'.

2. If t' is not consuming any place from P', then $m1'$ is in the same marked region as m' for some place $p' \in P'$ and again $m1' \in M'$.

\square

Corollary 3.1 Let an SG G correspond to an STG N with an unfolding N'. The set of cover approximations for places of a maximal tree in N' covers all states of G.

This follows directly from

1. Proposition 3.2;

2. Completeness of an unfolding (any marking of STG is represented in an unfolding); and

3. The conservative nature (by Definition 2.4 it covers more minterms than its cuts) of cover approximation for each place.

Definition 3.5 A place p' of an unfolding N' is called collision stable if any maximal tree passing through p' contains another place $p1'$ which is in collision with p'.

Proposition 3.3 If an original STG N has a CSC conflict then its unfolding N' contains a pair $p1'$, $p2'$ of collision stable places.

Proof: Let markings $m1$ and $m2$ correspond to the states that are in CSC conflict. These markings are different (otherwise they will have the same enabled transitions).

First note that if $m1$ and $m2$ are unsafe markings such that they mark exactly the same places, but with different number of tokens, then such markings cannot correspond to a CSC conflict of the corresponding binary vectors, since the sets of enabled transitions for $m1$ and $m2$ in the ordinary PN underlying the STG are equal.

Hence there is a place $p1 \in m1$, $p1 \notin m2$ or vice versa $p1 \in m2$, $p1 \notin m1$. Without loss of generality let us assume the first case. We will show that $\exists p1'$ such that $\Lambda(p1') = p1$ (i.e. $p1'$ is an unfolding instance of $p1$) and $p1'$ is collision stable.

11
Let $m1'$ be a cut corresponding to $m1$, and let $p1'$ belong to $m1'$. $m2'$ cannot be in the marked region of $p1'$. From the completeness of a maximal tree (see Proposition 3.2) follows that such a tree must have another place $p2' \neq p1'$ which is contained in $m2'$. Note that $p2'$ and $p1'$ can be two different instances of the same place of the original STG. As $m1'$ and $m2'$ correspond to a binary state with the same code, $p1'$ and $p2'$ must be in collision. Hence in any maximal tree $p1'$ is in collision with other places from the tree.

Similar considerations can be done for the place $p2'$. From this follows that $p1'$ and $p2'$ are the pair of places that are collision stable. □

Proposition 3.3 states that if an STG does not satisfy CSC, then there are places (at least two) in the STG unfolding that are in collision with other places in every maximal tree. This fact will be used as a characteristic property of an CSC conflict in terms of cover approximations. Note that this property is necessary but not sufficient: the unfolding of an STG satisfying CSC may have stable collision places. This can happen due to an overestimation of place approximation cubes and reflects the conservative nature of our approach.

Checking whether the above-mentioned situation takes place, i.e. checking for a fake collision, requires refining the collision relation between places. In Definition 3.1 this relation is defined on pairs of places \{p1', p2'\} independently from the rest of the unfolding. However, by considering the structure of collisions between $p1'$ and other places in an unfolding it is sometimes possible to conclude that the collision between $p1'$ and $p2'$ is fake.

Example 3.2 The SG in Figure 3,a shows a CSC conflict between the pair of states 0*0*00 and 0000* (output signal d is not enabled in the first state but is enabled in the second). Let us find collision stable places in the unfolding shown in Figure 3,c (cf. Proposition 3.3).

In the maximal tree $L1'$ (dashed line) in Figure 3,c places $p1'$ and $p7'$ are in collision. The only maximal tree that passes through $p1'$ is $L1'$ and hence $p1'$ is a stable collision place. Place $p7'$ belongs to two maximal trees: $L1'$ and $L2' = \{p0', p8', p7'\}$. In tree $L2'$, $p7'$ is in collision with $p8'$. Hence $p7'$ is a stable collision place as well. The fact that the STG of Figure 3,b does not have CSC is confirmed by collision stable places in the unfolding, which illustrates Proposition 3.3.

3.1 Refinement of collision relation between places

This subsection shows a partial (computationally easy) way to refine collisions for a given unfolding place p'. It further exploits information about maximal trees involving p'. For a particular place p' of an unfolding we can have the following cases of collisions:

(1) p' is collision free in every maximal tree;

(2) There exists a maximal tree in which p' is collision free;

(3) In any maximal tree p' has a collision, i.e. p' is collision stable.

While case (1) excludes any possibility to have CSC conflicts involving p', and case (3) is conservatively taken as a potential indication of a CSC conflict, case (2) always excludes any possibility to have CSC conflicts related to the binary states in the marking region of p'.

Proposition 3.4 If there is a maximal tree L' passing through place p' in which p' is free from collisions, then for any other maximal tree $L1'$ passing through p' any collision between p' and $p1' \in L1'$ is fake.

Proof: Suppose the opposite, i.e. that a collision between p' and $p1'$ in a tree $L1'$ is not fake. Then there must exist a cut m' covered by p' and a cut $m1'$ covered by $p1'$ such that they corre-
spond to the states with the same binary code. From the non-overlapping property\footnote{Unfortunately, non-overlapping of marked regions of places in a maximal tree in an unfolding does not imply non-overlapping of the corresponding marked regions in the original PN: if, e.g., a tree contains two instances of the same place their marked regions in the original PN can overlap.} of marked regions in a maximal tree, it follows that \(m1' \) does not belong to the marked region of \(p' \). In \(L' \), due to the completeness of maximal trees, there must be a place \(p2' \) that covers \(m1' \). This place is in collision with \(p' \), that contradicts the conditions of this proposition. \(\Box \)

Note that Proposition 3.4 does not imply that any collision between \(p' \) and other places in an unfolding are fake. It refines only the collision relations between \(p' \) and any place that can be in the same maximal tree as \(p' \). The refinement, however, does not concern places that are concurrent with \(p' \), because these places never occur together with \(p' \) in a maximal tree. An example of such a non-fake collision between concurrent places is shown in Figure 4. In the unfolding of Figure 4, a place \(p2' \) belongs to the maximal tree \(\{p2', p5'\} \) and is free from collisions in this tree. The marked region of \(p2' \) includes cuts \(m1' \) and \(m2' \) corresponding to states \(0*0* \) and \(00* \) that are in CSC conflict. Therefore a collision between \(p2' \) and \(p4' \) (\(p4' \) is concurrent with) is not fake.

![Figure 4: Non-fake collision between concurrent places](image)

We can ignore collisions between concurrent places in an unfolding because:

1. Any CSC conflict always leads to collisions between non-concurrent places (see Proposition 3.3).

2. Insertion of new signals to distinguish CSC conflicts will be done between non-concurrent places, if we extend any of the known CSC resolution methods for STGs to work on unfoldings.

Thus we arrive at the procedure to refine a collision relation shown in Figure 5.

The only non-trivial step in Figure 5 is the check whether a place \(p' \) is collision stable or not. The direct analysis of this by checking the collisions with \(p' \) in any maximal tree is computationally inefficient because the number of maximal trees containing \(p' \) can be exponential. Instead we use the converse approach, and the check essentially reduces to the construction of a maximal tree in which \(p' \) is collision free. If such a tree exists, \(p' \) is clearly not collision stable (see Proposition 3.4). The procedure that finds a maximal tree (if it exists) in which \(p' \) is collision free is shown in Figure 6.

Step 1 in Figure 6 removes from the unfolding all places that are concurrent with \(p' \) (they will never occur in the same maximal tree as \(p' \)) and all places with which \(p' \) is in collision (if a maximal tree in which \(p' \) is collision free exists these places cannot belong to it).
Input: unfolding $N' = (P', T', F', m'_0)$, set $Cubes = P' \times A$ of approximation covers for places (A-signals of STG) and matrix
$Order = (P' \cap T') \times (P' \cap T')$ of ordering relations between nodes of N'
Output: matrix $Coll = P' \times P'$ of collision relations between places of N'

1: foreach place $p' \in N'$ do
 construct the collision relations of p' with all $p1' \in N'$;
 store collision relations in a matrix $Coll$
endfor

2: do until a fixed-point in refining $Coll$ is reached
 foreach place $p' \in N'$ do
 if p' is not a collision stable place then
 remove from $Coll$ collisions between p' and any $p1', p1' \| p'$
 endif
 endfor
enddo

Figure 5: Algorithm for the refinement of collision relations.

Input: unfolding N', matrix $Order$, matrix $Coll$, place $p' \in N'$
Output: true if p' is collision stable, false otherwise

1: foreach place $p1' \in N', p1' \neq p'$ do
 if $p1' \| p'$ then remove $p1'$ from N';
 if $p1'$ is in collision with p' then remove $p1'$ from N';
endfor

2: do until p' is removed or a fixed-point in modifying N' is reached
 /* forward traversal of N' */
 if for $t' \in N'$ all places t' are removed then remove t' from N'
 if t' is removed then remove all $p1' \in t'$
 /* backward traversal of N' */
 if for $t' \in N'$ all places t' are removed then remove t' from N'
 if t' is removed then remove all $p1' \in t'$
enddo

3: if $p' \in N'$ then false else true

Figure 6: Algorithm for checking collision stable places.
Step 2 removes from the unfolding the other places and transitions that cannot be included in any maximal tree, because of the removal of places on Step 1. Indeed if all input places of some transition \(t \) are removed, then no path from the initial places can lead to this transition. Hence no maximal tree in which \(p' \) is collision free can contain \(t' \), and \(t' \) must be removed from the unfolding together with its output places.

In turn, if all output places of some transition \(t' \) are removed, then no path from this transition can lead to end nodes of the unfolding (cutoffs or places without output arcs). Hence no maximal tree in which \(p' \) is collision free can contain \(t' \) and \(t' \) must be removed from the unfolding together with its input places.

When in Step 2 a fixed-point in deleting the unfolding nodes is reached the rest of \(N' \) (if non-empty) contains a maximal tree with places that are not in collision with \(p' \). If \(p' \) has not been deleted, then it is not a collision stable place. This check is done on Step 3.

Let us evaluate the complexity of the algorithm for collision relation refinement.

The construction of the collision relations (Step 1 in Figure 5) is reduced to the analysis of pairwise intersections between approximation covers for places. This analysis is performed \(O(K^2) \) times, where \(K \) is the number of places in the unfolding. The cost of each check is \(O(n) \), where \(n \) is the number of STG signals. Hence the complexity of Step 1 is \(O(K^2 \cdot n) \).

The complexity of the refinement of matrix \(Coll \) (Step 2 in Figure 5) is defined by the checking for each place \(p' \) whether it is collision stable or not. This check is performed by the algorithm in Figure 6 and in its complexity is determined by Step 2 of the algorithm.

On each iteration of Step 2, at least one node of the unfolding must be removed (otherwise the fixed-point is reached). The analysis of the possibility to remove a node from an unfolding takes \(O(d), \) where \(d \) is the maximum in- and out-degree of unfolding nodes. Hence the complexity of Step 2 in Figure 5 is \(O((K + L) \cdot d) \), where \(L \) is the number of transitions in the unfolding. Refinement is done for each place, and therefore it requires \(O((K + L) \cdot d \cdot K) \) operations. Assuming that \(d \ll K + L, \) \(n \ll K + L \) we arrive to the overall complexity of collision relations refinement as \(O((K + L)^2) \), which is quadratic in the size of the unfolding. This illustrates the efficiency of the suggested method.

Example 3.3 Example \(xyz \) continued. The application of the above algorithms to refine collision relations is illustrated by using the \(xyz \) example.

In a maximal tree \(L1' = \{p1', p3', p5', p7'\} \) place \(p3' \) is in collision with \(p1' \). \(L1' \) is the only maximal tree that contains \(p3' \) and hence \(p3' \) is collision stable. To check whether \(p1' \) is also collision stable let us apply the Procedure from Figure 6. At first the Procedure removes from the unfolding all places that are concurrent with \(p1' \) (none in this example) and are in collision with \(p1' \) (place \(p3' \)). By traversing the unfolding forward from the removed place \(p3' \), transition \(y' + \) and place \(p5' \) are also removed. After this, we reach the fixed-point. The remaining part of the unfolding contains \(p1' \) and hence \(p1' \) cannot be collision stable (indeed, it is collision free in a tree \(L2' = \{p1', p2', p4', p6', p7'\} \)). Hence by Proposition 3.4 we can conclude that the collision between \(p1' \) and \(p3' \) is fake. From similar considerations, the collision between \(p5' \) and \(p1' \) is also detected as fake. After such refinement, all places in the unfolding are collision free and we can conclude that the \(xyz \) example satisfies the CSC requirement.

4 Avoiding fake collisions

Section 3.1 provided a way to detect fake collisions by refining collision relations using additional information extracted from all possible maximal trees (however, without enumerating all of them).
The algorithm shown in Figure 6 actually looks for one maximal tree where a place is free from collisions. This method is more general than [16], where such a refinement was performed only by state machines that belong to the so-called State Machine-cover set, because an SM-cover set contains usually only a few SMs in comparison to the total number of SMs in which an STG can be decomposed ([?]).

However, even when refining collision relations by using all maximal trees, it is not always possible to avoid fake collisions. The case where the method from Section 3.1 fails can be illustrated by a modification of the xyz example.

Example 4.1 (The xyz example modified.) Let us change the initial marking of xyz from p_1 to p_5p_6 (see Figure 7,a).

![Diagram of xyz STG](image_url)

Figure 7: Unfolding of xyz STG with different initial marking

The unfolding for this initial marking is shown in Figure 7,b. There are four maximal trees in the unfolding: two starting from place p_6' ($L_1' = \{p_6', p_7', p_1', p_3', p_5''\}$ and $L_2' = \{p_6', p_7', p_1', p_2', p_4', p_6''\}$) and two starting from place p_5' ($L_3' = \{p_5', p_7', p_1', p_3', p_5''\}$ and $L_4' = \{p_5', p_7', p_1', p_2', p_4', p_6''\}$). In any of the trees there are places in collision: p_6' is either in collision with p_6'' or with p_5'', while p_5' is either in collision with p_6'' or with p_5''. Hence no refinement of the collision relation can detect them as fake ones, and it is impossible to conclude about the absence of CSC conflicts in the xyz example by the unfolding in Figure 7,b.

The failure to detect fake conflicts in the modified xyz example by using the unfolding shown in Figure 7,b is natural. Indeed two collision pairs for place p_6' e.g. are: $\{p_6', p_6''\}$ and $\{p_6', p_5''\}$. The marked regions for p_6' and p_6'' should intersect in their cover because they are instances of the same place p_6 of the original STG, while the marked regions for p_6' and p_5'' will intersect because these are instances of concurrent places p_6 and p_5 in the STG. Note that two instances of the same place of an STG can in general (but not in this example) be involved in a true STG conflict, if they correspond to the intersection of two reachable markings that are in CSC conflict.

There are two ways to overcome the above difficulty

- To construct a smaller unfolding, by changing the initial marking.
- To explore the set of states corresponding to a collision and check CSC by using this set explicitly.

We will consider both methods in this section.
4.1 Minimizing the size of unfolding

The xyz example suggests that the size of an unfolding depends upon the choice of initial marking. By choosing a proper initial marking we can reduce the size of the constructed unfolding. Clearly the choice of initial marking must not change the set of STG markings covered by an unfolding, i.e., a necessary condition to change the initial marking from m_0^1 to m_0^2 is that in both cases the unfoldings should contain all reachable markings of the original STG. We will denote this legal change by "transfer of the initial marking".

A particular case of STG in which the initial marking can be transferred without changing the specification is an STG with a strongly connected reachability graph. The same condition can also be expressed in terms of home markings.

Definition 4.1 For a PN N with initial marking m_0 a marking m is called a home marking iff for any marking m_1 reachable from m_0, m is reachable from m_1.

Property 4.1 The initial marking m_0 of a PN N is a home marking iff the reachability graph of N is strongly connected.

The proof trivially follows from the definition of a home marking.

In the rest this Section, while discussing the issue of reducing the unfolding size by a proper choice of the initial marking, we will always assume that the initial marking of the original STG is a home one. For example, this information can be available from the semantics of the specified process. In case no such assumption can be made about the nature of the original STG, the transfer of the initial marking is not legal and other methods to resolve collisions should be used.

In [8] a procedure to find a "good" initial marking in an STG was proposed. The idea behind this procedure is that it is unreasonable to choose any non-basic marking as initial. Indeed in the process of unfolding generation cutoff conditions are checked only by basic markings and therefore no cutoff can be produced by the initial marking if the latter is non-basic.

This observation is formalized below.

Definition 4.2 $BM(t')$ will be called a stable basic marking of t if $BM(t') = BM(t'')$ for some other occurrence $t'' (t' \Rightarrow t'')$ of transition t.

The significance of a stable basic marking is clear: it is a marking by which in an unfolding construction we can make a cutoff.

Property 4.2 Let the initial marking m_0 of a bounded PN N be a home marking of N. If the local configuration of transition t' in the unfolding N' contains all the places from m_0' then $BM(t') (BM(t')')$ is a stable basic marking (cut).

Proof: Let $m_0' \xrightarrow{\gamma'} BM(t')$. As m_0 is a home marking there is a feasible sequence γ', such that $BM(t')' \xrightarrow{\gamma} m_1'$, where m_1' and m_0' represent the same marking of PN N. As $\sigma t'$ is feasible from m_0' then $\sigma 2'$ will be feasible from m_1', where $\sigma 2'$ contains the same transitions of the PN as $\sigma t'$ (but the occurrences of these transitions are different). Let us prove that $m 2'$ (where $m 1' \xrightarrow{\eta} m 2'$) is a basic cut of t''.

9Recall that a cut (marking) is called basic if it is (the result of the Λ mapping of) the final state of some local configuration in the unfolding.
1. From $m'_0 \xrightarrow{\sigma'_1} BM(t')$ it follows that all transitions from σ'_1 belong to the local configuration of t', and the last transition of σ'_1 is t'. Therefore all transitions from σ'_2 belong to the local configuration of t'' and its last transition is t''.

2. Suppose that some transitions $t'_1, t'_2, \ldots \in \gamma'$ are not in $\{ \Rightarrow t'' \}$. Let us remove all of them from γ' and denote the obtained sequence γ''. Two cases are possible:

 Case 1. $BM(t') \xrightarrow{\gamma''} m_3'$ and m_3' corresponds to m_0 in N. Then $BM(t') \xrightarrow{\gamma''} m_3' \xrightarrow{\gamma''} m_2'$ and $m_2' = BM(t''')$ because all transitions of γ'' and σ_2' belong to $\{ \Rightarrow t'' \}$ and t'' fires in σ_2'.

 Case 2. $BM(t') \xrightarrow{\gamma''} m_3'$ and m_3' is different from m_0 in N. If $m_3 > m_0$ then PN N is unbounded, which contradicts the conditions of this property. Therefore there is a place $p \in m_0$ that does not belong to m_3. All places from m_0 were consumed to fire t' and therefore p' is an input place of some transition $t'_i \in \{ \Rightarrow t' \}$. As σ_2' contains the same PN transitions as σ_1' then t''_i cannot fire in σ_2' because of the lack of its input place p''. This contradicts the conditions of the construction of σ_2'. The assumption of Case 2 is wrong. \square

Property 4.2 gives a simple way to reduce the size of an unfolding by a proper choice of its initial marking. At first an unfolding prefix is constructed until some transition t' in a prefix consumes all the initial places (i.e. all the initial places belong to the local configuration of t'). The basic cut, and its basic marking, of t' is a good candidate to transfer the initial marking of the unfolding. A new unfolding is constructed from $BM(t')'$.

Example 4.2 Let us check the proposed procedure of initial marking transfer on the modified xyz example from Figure 7.b. First, we construct a prefix of the unfolding from initial marking $p_5' p_6'$ until both p_5' and p_6' are consumed (see Figure 8,a). The basic cut of transition z' that consumes p_5' and p_6' is p_7'. This gives the marking from which we start generating a new unfolding. The result is shown in Figure 8,b. It is easy to check that in the new unfolding by the procedure from Section 3.1 we can refine collision relations and conclude about the absence of CSC conflicts in the xyz example.

![Figure 8: Transfer of initial marking in xyz example](image)

The main shortcoming of the reduction of unfolding size by transferring the initial marking is that additional information is needed about the properties of the STG. This method works only in the case when the initial marking of STG is a home marking. If no information is available about the initial marking, then the proposed approach cannot be applied.

A more general (however more elaborate) approach is developed in the next Section.
4.2 Checking CSC conflicts by partial construction of binary states

If approximation cubes $C(p_1')$ and $C(p_2')$ of places p_1' and p_2' are intersecting ($c_{12} = C(p_1') \cap C(p_2') \neq \emptyset$), a straightforward way to check whether this intersection corresponds to a real CSC conflict would be to construct all states corresponding to c_{12} in the marking regions of p_1' and p_2' and to compare the transitions enabled in these states. We will denote this process by the term "state restoration".

The advantage of this method is that it gives the exact information on CSC conflicts, while its difficulty lies in the high cost (exponential in general) of the state construction. However, in practice the marking region of a place often contains much less states than the entire unfolding; furthermore, only part of these states belong to the intersection of cubes.

To construct the states corresponding to some cube c we first need to identify in an unfolding all the regions (called on-regions) where cube c evaluates to 1. Similar to the marked regions of places, these on-regions are defined by sets of cuts (slices, as shown below) (θ'_c, Θ'^c), where θ'_c is the "first" cut, in which cube c evaluates to 1 and Θ'^c contains all the "last" cuts in which c still evaluates to 1.

Definition 4.3 A cut θ'_c is called a minimal cut, or min-cut, for cube c if in θ'_c cube c evaluates to 1 and

- either θ'_c is the initial cut,
- or in any cut θ_1' immediately preceding θ'_c (i.e. $\exists \theta', \theta_1' \rightarrow \theta'_c$) cube c evaluates to 0, and in θ'_c it evaluates to 1.

Definition 4.4 A cut θ'^c is called a maximal cut, or max-cut, for cube c if in θ'^c cube c evaluates to 1 and

- either θ'^c is a final cut of the unfolding,
- or in any cut θ_1' immediately succeeding θ'^c (i.e. $\exists \theta', \theta'^c \rightarrow \theta_1'$) cube c evaluates to 0.

A min-cut θ'_c points to the cut in which cube c is turned on for the "first" time after being set off.

Definition 4.5 A max-cut θ'^{ci} of cube c matches a min-cut θ'_c if

1. $\theta'_c \Rightarrow \theta'^{ci}$
2. for any other min-cut θ'_c of c, if $\theta'_c \Rightarrow \theta'^{ci}$ then $\theta'_c \neq \theta'_c$ and
3. for any other max-cut θ'^c of c, if $\theta'_c \Rightarrow \theta'^c$ then $\theta'^c \neq \theta'^{ci}$.

Definition 4.5 associates any min-cut θ'_c, with the max-cuts "adjacent" to it. Adjacency here is defined based on the partial order \Rightarrow on a set of cuts: by Condition 2 if a max-cut θ'^{ci} matches the min-cut θ'_c then no other minimal or maximal cuts can occur in between θ'_c and θ'^{ci} (otherwise θ'_c and θ'^{ci} cannot be considered as adjacent ones).

After reaching θ'_c cube c remains "On" until one of the max-cuts θ'^{ci} is reached. Beyond θ'^{ci} c immediately turns off. Hence a part of an unfolding between a min-cut θ'_i and a max-cut θ'^{ci}

10Cube c can be set and reset many times. To be more precise min-cuts must be enumerated and referred by θ'^{ci} for the i-th setting of cube c. When no ambiguity arises we will omit this index.
corresponds to a part of the ON-set of cube \(c \). Since there exist in general (due to conflicts, as shown below) several max-cuts matching the same min-cut \(\theta'^i_c \), we will denote this matching set of max-cuts as \(\Theta^{ki} (\Theta^{ki} = \{ \theta^{ki} \}) \).

The following property indicates that only conflict cuts can be included into a matching set of maximal cuts. This shows that the derivation of the ON-set of cube \(c \) does not depend on the degree of concurrency, and hence that highly concurrent STGs can be easily handled.

Property 4.3 Any two max-cuts for cube \(c \theta^{ki} \) and \(\theta^{ki} \) from the same matching set \(\Theta^{ki} \) are in conflict.

Proof:
1. \(\theta^{ki} \) and \(\theta^{ki} \) cannot be ordered according to Definition 4.5.
2. Suppose \(\theta^{ki} \theta^{ki} \) (coexistent cuts). Let us consider the “last” cut \(m' \) such that \(m' \Rightarrow \theta^{ki} \) and \(m' \Rightarrow \theta^{ki} \). By definition of matching cuts it is clear that min-cut \(\theta'^i_c \) precedes \(m' \). Let \(\sigma_1' \) and \(\sigma_2' \) be feasible sequences that lead from \(m' \) to \(\theta^{ki} \) and \(\theta^{ki} \) respectively, with \(t' \) and \(t' \) being their first transitions.

2.1. \(t' \not\subset \sigma_2' (t' \not\subset \sigma_1') \) otherwise \(m' \) is not the last cut from which both \(\theta^{ki} \) and \(\theta^{ki} \) are reachable.
2.2. From \(\theta^{ki} \theta^{ki} \) follows that \(\theta^{ki} \) and \(\theta^{ki} \) do not contain conflict places. Hence no input place of \(t' \) is consumed by a firing sequence \(\sigma_2' \) and \(t' \) is enabled in \(\theta^{ki} \).
2.3. In any cut between the min-cut and the max-cut cube \(c \) evaluates to 1. Then \(c \) cannot be reset by the firing of transition \(t' \) and \(c \) evaluates to 1 in a cut \(m_1, \theta^{ki} \rightarrow m_1 \). The latter contradicts the condition that \(\theta^{ki} \) is a max-cut for cube \(c \). This contradiction disproves the assumption \(\theta^{ki} \theta^{ki} \).
3. From \(\theta^{ki} \) and \(\theta^{ki} \) being not ordered (item 1) and not concurrent (item 2) it follows that \(\theta^{ki} \) and \(\theta^{ki} \) are in conflict. \(\Box \)

The following property shows that the min-cut \(\theta'_c \) and a set of max-cuts \(\Theta^c \) defines a slice of the unfolding. It can be easily proved by applying Property 4.3 and examining all the conditions of Definition 2.3.

Property 4.4 The set of cuts \(\{ m' \} \) such that \(\forall m' : \theta'_c \Rightarrow m' \Rightarrow \theta^c \) for some \(\theta^c \in \Theta^c \) is a slice \(S_c = \langle \theta'_c, \Theta^c \rangle \).

Definition 4.6 A slice \(S_c = \langle \theta'_c, \Theta^c \rangle \) is an ON-slice of a cube \(c \) if \(\forall m' \in S_c : \theta'_c \Rightarrow m' \Rightarrow \theta^c \) for some \(\theta^c \in \Theta^c \).

The following property guarantees monotonicity, i.e. the absence of “value gaps”, in an ON-slice.

Property 4.5 In any cut \(m' \in S_c \) cube \(c \) evaluates to 1.

Proof: Assume the converse. Then one can find a cut \(m' \) such that \(\theta'_c \Rightarrow m' \Rightarrow \theta^c \), where a max-cut \(\theta^c \) matches min-cut \(\theta'_c \) and:
1. Cube \(c \) evaluates to 1 in \(\theta'_c \) and to 0 in \(m' \). Hence in a feasible sequence \(\sigma' (\theta'_c \rightarrow m') \) there is a transition \(a' \) that resets \(c \).
2. Any sequence in the unfolding from cut \(m_1' \) to cut \(m_2' \) contains the same set of transitions. This is because no such sequence can contain conflict transitions.

20
Therefore any feasible sequence from \(\theta'_c \) to \(\theta'^c \) contains \(d' \). The latter means that any such sequence has a cut in which cube \(c \) evaluates to 0.

3. Among all sequences from \(\theta'_c \) to \(\theta'^c \) let us choose the set of sequences \(\Sigma 1' \) in which a cut where cube \(c \) evaluates to 0 is reached in the least number of steps.

4. Among all sequences from \(\Sigma 1' \) let us choose the subset of sequences \(\Sigma 2' \) in which a cut where cube \(c \) evaluates to 1 (after being reset) is reached in the least number of steps.

5. Let \(\sigma' \) be an arbitrary sequence from \(\Sigma 2' \). It can be represented as \(\sigma' = \sigma 1', d', \sigma 2', b', \sigma 3' \) (see Figure 9, where the values to which cube \(c \) evaluates are shown above the corresponding markings).

Cube \(c \) is set by transition \(b' \) between \(m2' \) and \(m3' \). \(m3' \) cannot be another min-cut for \(c \) otherwise \(\theta'^c \) cannot match \(\theta_c' \) (see Condition 2 of Definition 4.5). This means that in at least one of the predecessors of \(m3' \), cube \(c \) must evaluate to 1 (cut \(m4' \) in Figure 9). Hence transition \(d' \) (\(m4' \xrightarrow{d'} m3' \)) has no influence on the evaluation of cube \(c \).

6. \(d' \) cannot belong to \(\sigma 2' \). Indeed if \(d' \in \sigma 2' \) then a cut \(m4' \) is reachable from \(m' \), cube \(c \) evaluates to 1 in both \(m4' \) and \(m3' \), but the sequence from \(m' \) to \(m4' \) is shorter than that from \(m' \) to \(m3' \). The latter contradicts the choice of sequence \(\sigma' \) (see item 4 of this proof).

7. \(d' \) cannot belong to \(\sigma 1' \). Indeed if \(d' \in \sigma 1' \) and \(d' \) has no influence on the value of cube \(c \), then by delaying the firing of \(d' \) we can construct a feasible sequence \(\sigma 1'/d' \) which starting from cut \(\theta'_c \) leads to a marking in which \(c \) evaluates to 0. This sequence is smaller than \(\sigma 1' \), that contradicts our choice (see item 3 of this proof).

8. In the unfolding for any cuts \(m2', m3', m4' : m2' \xrightarrow{b'} m3', m4' \xrightarrow{d'} m3' \) there exists cut \(m5' \) such that \(m5' \xrightarrow{b'} m4' \), \(m5' \xrightarrow{d'} m2' \) (see Figure 9). This follows from the way of unfolding construction in which no conflict transitions can lead to the same cut (i.e. \(b' \) and \(d' \) as above must always be concurrent). Then moving by sequence \(\sigma' \) backward from marking \(m2' \) and taking into account that \(d \not\in \sigma' \) we will arrive at a cut \(m6' \) such that \(m6' \xrightarrow{d} \theta' \).

Cube \(c \) evaluates to 1 in \(\theta'_c \), and it does not depend on \(d'c \), therefore cube \(c \) evaluates to 1 in \(m6' \). The latter contradicts the assumption that \(\theta'_c \) is a min-cut for cube \(c \) (see Definition 4.3) and disproves the initial assumption about a non-monotonous behaviour of \(c \) inside slice \(S_c \).}

The procedure for calculating the slices corresponding to the ON-set of cube \(c \) is shown in Figure 10. This algorithm first finds all min-cuts of cube \(c \) (set \(\text{Min} \)) that are reachable from the initial marking without passing through another min-cut (procedure \(\text{Find_min-cuts} \)). For all these cuts it constructs the corresponding ON-slices by calculating the matching sets of max-cut (procedure \(\text{Find_match-cuts} \)). However the unfolding may have other minimal cuts of \(c \) that succeed cuts from \(\text{Min} \) (cube \(c \) can be set and reset several times). To find them we iterate the procedure starting from cuts \(m' \) that immediately succeed ("next cut \(m'' \)) some ON-slice. The iteration means that we transfer the initial marking of the unfolding to \(m' \) (i.e. remove from the unfolding everything that precedes or in conflict with \(m' \)) and proceed with the derivation of the ON-set from the modified unfolding. Eventually, the full ON-set will be constructed.
Input: unfolding $N' = (m'_0, P', T', F')$ and cube c
Output: set of On-set slices ON of c

main
 ON = 0
 Find_ON-set(N', ON)

Find_ON-set(N', ON)
 Min = 0
 Find_min-cuts(N', Min)
 /* Finds all minimal cuts of c 'first' reachable from $m'_0 */
 /* (i.e. $\theta_1' \in Min \Rightarrow \exists \theta_2 \Rightarrow \theta_1$) */
 foreach minimal cut $\theta'_i \in Min$ do
 Find_match-cuts(θ'_i, Θ^{ci})
 ON = ON \cup (θ'_i, Θ^{ci})
 Calculate next cuts for slice (θ'_i, Θ^{ci})
 /* Cuts next to some cuts in (θ'_i, Θ^{ci}), in which c evaluates to 0 */
 foreach next cut m' do
 Modify(N', m')
 /* Removes from N' nodes that are in \Rightarrow or $#$ with places of m' */
 Find_ON-set(N', ON)
 endfor
endfor

Figure 10: Algorithm for the calculation of ON-set for cube c.
Figures 11 and 12 show procedures \textit{Find_min-cuts} and \textit{Find_match-cuts} in detail.

Procedure \textit{Find_min-cuts} checks in which signals (a e.g.) the cube \(c\) differs from \textit{current-cut} and returns the corresponding events (a*) to \textit{diff-event}. If \(c\) evaluates to 1 in \textit{current-cut} then \textit{diff-event} becomes 0 and \textit{current-cut} belongs to \textit{Min}.

If in a \textit{current-cut} cube \(c\) evaluates to 0, then the set \textit{First} is constructed which contains all “first” occurrences of transitions whose name and sign coincides with \textit{diff-event}. Clearly, until some transition from \textit{First} has fired, the cube \(c\) is not turned “On”.

Then the initial marking is transferred to a marking which follows \textit{current-cut} and some transition \(t'\) from \textit{First} (this is done by procedure \textit{Modify}), and \textit{Find_min-cuts} is called recursively.

The following Property shows that \textit{Find_min-cuts} finds all the min-cuts of \(c\) that are “first” reachable from \(m'_0\).

\textbf{Property 4.6} Any min-cut \(\theta'_c\) such that:
1. \(\theta'_c\) is reachable from \(m'_0\), and
2. \(\exists c, m'_0 \Rightarrow \theta'_c \Rightarrow \theta'_c'\)
 is contained in the set \textit{Min} derived by the procedure \textit{Find_min-cut}.

\textbf{Proof:} The proof can be done by induction on the length of a feasible sequence \(\sigma'\) from \(m'_0\) to \(\theta'_c\).

If \(|\sigma'| = 0\) then cube \(c\) evaluates to 1 in \(m'_0\) and procedure \textit{Find_min-cut} returns the set \textit{Min} with a single element \(m'_0\). This gives the induction basis.

Let the statement of Property to be valid for any \(|\sigma'| = k\), we will show its validity for \(|\sigma'| = k + 1\).

If \(|\sigma'| \neq 0\) then cube \(c\) evaluates to 0 in \(m'_0\). Therefore \(c\) differs from the binary state of \(m'_0\) in at least one signal, e.g. a. Clearly sequence \(\sigma' (m'_0 \Rightarrow \theta'_c)\) contains some transition \(a*\) (otherwise \(c\) cannot evaluate to 1 in \(\theta'_c\)). Let \(a*\) be the first transition of signal \(a\) in \(\sigma'\). By the definition of the set \textit{First}: \(a* \in \text{First}\). Then procedure \textit{Find_min-cut} transfers the initial marking of the unfolding to the marking of a cut \(m'\) that is reachable in \(\sigma'\) after the firing of \(a*\) and starts constructing a min-cut from \(m'\). Sequence \(\eta', m' \Rightarrow \theta'_c\) is shorter than \(\sigma'\) and hence \(|\eta'| \leq k\). From the induction assumption, it follows that for \(\eta'\) \textit{Find_min-cut} will successfully find all minimal cuts first reachable from \(m'\), i.e. it will find \(\theta'_c\). \(\square\)

When constructing the matching set of max-cuts for a min-cut \(\theta'_c\), the part of unfolding preceding or in conflict with \(\theta'_c\) is irrelevant (all max-cuts from a matching set succeed \(\theta'_c\)). To abstract away from this part the procedure \textit{Find_match-cuts} first transfers the initial marking to \(\theta'_c\) (\textit{Modify}(N', \theta'_c)). Further restriction of the unfolding segment in which the matching set is searched can be done by removing from it all the places and transitions that succeed at least one transition from the set, called \textit{Reset}, of transitions that reset cube \(c\). Here we assume that the \(\Rightarrow\) relation is reflexive and transitions from the \textit{Reset} set are also removed from the unfolding segment. After this, each maximal configuration from a segment corresponds to some maximal matching cut \(\theta'_{ci}\). Indeed in the original unfolding the only transitions that can fire in \(\theta'_{ci}\) are transitions from \textit{Reset}, and each of them is resetting cube \(c\). Hence by checking the complete set of maximal configurations of the unfolding segment the procedure \textit{Find_match-cuts} indeed finds the matching set \(\Theta'_{ci}\) of maximal cuts.

After the ON-set of cube \(c\) is found we can return to the original task of detecting CSC conflicts. This task, for a pair of collision places \(p1'\) and \(p2'\), consists of the following steps:

1. Let \(C(p1')\) and \(C(p2')\) be the cubes approximating \(p1'\) and \(p2'\) and \(c = C(p1') \cap C(p2') \neq 0\).
Input: unfolding $N' = (m'_0, P', T')$ and cube c
Output: set Min of minimal cuts of c "first" reachable from m'_0

Find_min-cuts(N', Min)
 current-cut = m'_0
 diff-event = Diff(current-cut)
 if diff-event = \emptyset then return($\text{Min} \cup$ current-cut)
 First$= \text{Find}_1$(diff-event, N')
 foreach $t' \in \text{First}$ do
 current-cut = final marking(\Rightarrow current-cut $\cup \Rightarrow t'$)
 Modify(N', current-cut)
 Find_min-cuts(N', Min)
 endfor

Figure 11: Algorithm for calculating the "first" minimal cuts for cube c.

Input: unfolding $N' = (m'_0, P', T')$ and minimal cut θ_{ci}' of cube c
Output: set Θ^{sci} of maximal cuts matching θ_{ci}

Find_match-cuts(N', θ_{ci})
 $\Theta^{\text{sci}} = \emptyset$
 Modify(N', θ_{ci})
 Reset = set of transitions of N' that resets cube c
 Unf-segment = N'
 foreach $t' \in \text{Reset}$ do
 foreach $t'i, p'$ such that $t' \Rightarrow t'i, p'$ do
 Unf-segment = Unf-segment $- t'i - p'$
 endfor
 endfor
 Last = \emptyset
 foreach $t' \in \text{Unf-segment}$, such that $\not\exists t'i \in \text{Unf-segment}, t' \Rightarrow t'i$ do
 Last = Last $\cup t'$
 endfor
 foreach $t' \in \text{Last}$ do
 max-cut = $(C_{\text{max}}(t'))^*$
 /* $C_{\text{max}}(t')$ - maximal configuration with t' in Unf-segment */
 $\Theta^{\text{sci}} = \Theta^{\text{sci}} \cup$ max-cut
 foreach $t' \in \text{Last}$ do
 if $t' \in C_{\text{max}}$ then Last = Last $- t'$
 endfor
 endfor

Figure 12: Algorithm for calculating a matching set for minimal cut.
2. Find the intersection of the ON-set of \(c \) with the marked regions of \(p_1' \) and \(p_2' \) (denoted by \(ON(p_1') \) and \(ON(p_2') \)).

3. Construct the binary states of \(ON(p_1') \) and \(ON(p_2') \).

4. Check for CSC conflicts explicitly, using the binary states of \(ON(p_1') \) and \(ON(p_2') \).

All the steps of this procedure are trivial to implement, with the exception of Step 2, which was discussed above. Let us consider an application of the suggested method to the STG and its unfolding shown in Figure 13,a,b.

![Figure 13: Derivation of ON-set for a cube](image)

Example 4.3 Let us choose a maximal tree \(L = \{p_1', p_2', p_12', p_14'\} \) in the unfolding of Figure 13,b. Places \(p_1' \) and \(p_14' \) in this tree are in collision. The intersection of their approximation cubes gives cube \(c = \{0\} \cap 11-0- = 11-0- \).

The marked region of \(p_1' \) starts from initial marking \(p_1'p_3' \) and ends in marking \(p_1'p_9'p_10' \). This is the first unfolding segment in which the ON-set of cube \(c \) is constructed. In the initial marking of this segment cube \(c \) evaluates to 0. Event \(a' + \) differentiates the binary state of \(m_0 \) from cube \(c \). Hence we transfer the initial marking of the segment immediately after the firing of \(a' + \): this will be the basic marking of \(a' + \), with binary state 11000. In this binary state cube \(c \) evaluates to 1 and hence this is the min-cut \(\theta_{c1} \). To find the matching set of max-cuts for \(\theta_{c1} \) let us determine the set of transitions that force \(c \) to reset. They are: \(a-, b-, d+ \). Only \(d+ \) and \(b- \) have instances in the considered unfolding segment. We should remove from the segment all instances of \(d+ \) and \(b- \) together with their successors. The remaining part has two maximal configurations: one corresponding to cut \(p_1'p_5'p_10' \) and another to cut \(p_1'p_7' \). These cuts forms the matching set of \(\theta_{c1} \) and the construction the an ON-slice of \(c \) within the marking region of \(p_1' \) is completed:

25
$O(N(p')) = \{p_1'p_4', \{p_1'p_5'p_10', p_1'p_7''\}\}$. The set of binary states corresponding to $O(N(p'))$ is: \{110*0*0*, 11*10*0, 11*0*0*1, 11*10*1\}.

In the marked region of p_4' cube c evaluates to 1 in its initial marking $p_1'p_4'$, hence this marking is a min-cut for c. The marked region of p_4' does not contain any transition that resets c, thus the single max-cut of c corresponds to the single maximal configuration of the marked region, $p_5'p_4'$. The set of binary states corresponding to $O(N(p_4'))$ is: \{111*01, 11001*, 1*1000\}.

By checking the binary states corresponding to $O(N(p'))$ and $O(N(p_4'))$ (e.g., pair of states 110*0*0* and 1*1000) it is easy to conclude that the collision between p_1' and p_4' indeed corresponds to a CSC conflict.

5 Conclusions

We have presented a method of checking Signal Transition Graphs for state coding conflicts, in particular identifying whether an STG satisfies Complete State Coding. The latter is a key condition for an STG specification to be implementable in logic. The overall framework is based on the STG unfolding, whose potential advantage over the more traditional state graph approach is in the partial order representation of concurrent behaviour. While STG unfolding is known to help in avoiding the exploration of the full state space when solving some verification problems such as boundedness and consistency checks in STGs, there has been very little research in using unfoldings in performing STG synthesis. In particular, the previously known method [19] for deriving logic from STG unfolding offered an important conceptual approach based on approximated boolean covers of the unfolding elements. It was however inefficient because it could not distinguish between true and fake CSC conflicts among the intersections of approximate ON and OFF covers of synthesized signals.

This paper provides an in-depth study of the coding conflict phenomenon by using the approximation-based approach. A necessary condition for CSC conflicts to exist exploits “partial” coding information (about place instances) which is made available from the computation of a maximal tree in the unfolding. While this condition in many practical cases coincides with real conflicts, and is computationally efficient, it may hide the so called “fake” conflicts. This paper presents refinement technique aimed at resolving such situations, at the expense of extra computational costs. This technique limits the search to the parts of the unfolding that may potentially exhibit a fake conflict. Those parts need explicit state traversing, which may be exponentially hard.

The overall efficiency of the method in practice can only be established after extensive experiments with benchmarks. It will require developing a novel set of STG benchmarks, because the existing ones (used e.g. in [10, 3]) are known to illustrate the power of state graph based techniques, rather than that of STG unfoldings, in synthesis tasks. This task, along with the software implementation of the proposed algorithms, will be addressed in the near future.

References

