

COMPUTING
SCIENCE

Title: Experience Report: Evaluation of Holistic Fault Tolerance

Names: Rem Gensh, Alexander Romanovsky, Alessandro Garcia

TECHNICAL REPORT SERIES

No. CS-TR- 1507 – May 2017

TECHNICAL REPORT SERIES

No. CS-TR- 1507 Date 15th May 2017

Title: Experience Report: Evaluation of Holistic Fault Tolerance

Authors: Rem Gensh, Alexander Romanovsky, Alessandro Garcia

Abstract: Software maintenance is a crucial phase of the software
development life cycle. It is important to facilitate this stage, complying with
both functional and non-functional requirements. However, very often the
main focus is made on the functional features of the application, whereas fault
tolerance mechanisms are neglected and as a result do not provide sufficient
maintainability and reusability. In our previous work we introduced the
concept of Holistic Fault Tolerance as a novel crosscutting approach to the
design and implementation of fault tolerance mechanisms for developing
reliable software applications that meet non-functional requirements, such as
performance and resource utilisation. This paper evaluates the
maintainability of the Holistic Fault Tolerance architecture using
experimental analysis of the developer's effort required to implement various
modifications of the fault tolerance functionality. The paper starts by
justifying the choice of modifications and evaluation techniques. Then the
aspect-oriented implementation we proposed for Holistic Fault Tolerance is
evaluated by conducting its experimental comparison with a standard object-
oriented fault tolerance implementation. The evaluation shows that the
implementation with Holistic Fault Tolerance makes fault tolerance
mechanisms easier to maintain and ensures higher modularity of the source
code.

© 2017 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical Details

Title and Authors

Experience Report: Evaluation of Holistic Fault Tolerance
Rem Gensh, Alexander Romanovsky, Alessandro Garcia

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR 1507

Abstract

Software maintenance is a crucial phase of the software development life
cycle. It is important to facilitate this stage, complying with both functional
and non-functional requirements. However, very often the main focus is made
on the functional features of the application, whereas fault tolerance
mechanisms are neglected and as a result do not provide sufficient
maintainability and reusability. In our previous work we introduced the
concept of Holistic Fault Tolerance as a novel crosscutting approach to the
design and implementation of fault tolerance mechanisms for developing
reliable software applications that meet non-functional requirements, such as
performance and resource utilisation. This paper evaluates the
maintainability of the Holistic Fault Tolerance architecture using
experimental analysis of the developer's effort required to implement various
modifications of the fault tolerance functionality. The paper starts by
justifying the choice of modifications and evaluation techniques. Then the
aspect-oriented implementation we proposed for Holistic Fault Tolerance is
evaluated by conducting its experimental comparison with a standard object-
oriented fault tolerance implementation. The evaluation shows that the
implementation with Holistic Fault Tolerance makes fault tolerance
mechanisms easier to maintain and ensures higher modularity of the source
code.

About the authors

Rem Gensh is currently a Research Technician in the Secure & Resilient
Systems group, School of Computing Science at Newcastle University. He
graduated at Kyrgyz-Russian Slavic University, Kyrgyzstan, with honors in
2008. After a 6-years extensive industrial experience as a software developer
and a team leader, he reallocated to research area and started his PhD in
2014. He is involved in EPSRC/UK PRiME project. His research interests
include fault tolerance, energy-efficient software design and many-core
architectures.

Alexander (Sascha) Romanovsky is a Professor in the Centre for Software and
Reliability, Newcastle University. He is the leader of the Dependability Group

at the School of Computing Science. His main research interests are system
dependability, fault tolerance, software architectures, exception handling,
error recovery, system structuring and verification of fault tolerance.He
received a M.Sc. degree in Applied Mathematics from Moscow State
University and a PhD degree in Computer Science from St. Petersburg State
Technical University. He was with this University from 1984 until 1996, doing
research and teaching. In 1991 he worked as a visiting researcher at ABB Ltd
Computer Architecture Lab Research Center, Switzerland. In 1993 he was a
visiting fellow at Istituto di Elaborazione della Informazione, CNR, Pisa, Italy.
In 1993-94 he was a post-doctoral fellow with the Department of Computing
Science, University of Newcastle upon Tyne. Alexander is now the Principle
Investigator of the TrAmS-2 EPSRC/UK platform grant on Trustworthy
Ambient Systems (2012-16) and of the EPSRC/RSSB research
project SafeCap on Overcoming the Railway Capacity Challenges without
Undermining Rail Network Safety (2011-14), and the Co-investigator of the
EPSRC PRiME program grant (2013-18) and of the FP7 COMPASS Integrated
Project (2011-14).

Alessandro Garcia is Associate Professor at the Informatics Department, PUC-
Rio, Brazil. He is the Head of the Opus Research Group. Alessandro’s research
interests include Exception Handling, Software Fault Tolerance, Multi-Agent
Systems, Software Architecture, Aspect-Oriented Software Development,
Computational Reflection, Design Patterns and Software Metrics.

Suggested keywords
fault tolerance; maintainability; maintenance; software evaluation; aspect
oriented programming;

Experience Report:

Evaluation of Holistic Fault Tolerance

Rem Gensh, Alexander Romanovsky

Centre for Software Reliability

Newcastle University

Newcastle upon Tyne, UK

{r.gensh, alexander.romanovsky}@newcastle.ac.uk

Alessandro Garcia

Informatics Department

PUC-Rio

Rio de Janeiro, Brazil

afgarcia@inf.puc-rio.br

Abstract—Software maintenance is a crucial phase of the

software development life cycle. It is important to facilitate this

stage, complying with both functional and non-functional

requirements. However, very often the main focus is made on the

functional features of the application, whereas fault tolerance

mechanisms are neglected and as a result do not provide

sufficient maintainability and reusability. In our previous work

[1] we introduced the concept of Holistic Fault Tolerance as a

novel crosscutting approach to the design and implementation of

fault tolerance mechanisms for developing reliable software

applications that meet non-functional requirements, such as

performance and resource utilisation. This paper evaluates the

maintainability of the Holistic Fault Tolerance architecture using

experimental analysis of the developer’s effort required to

implement various modifications of the fault tolerance

functionality. The paper starts by justifying the choice of

modifications and evaluation techniques. Then the aspect-

oriented implementation we proposed for Holistic Fault

Tolerance is evaluated by conducting its experimental

comparison with a standard object-oriented fault tolerance

implementation. The evaluation shows that the implementation

with Holistic Fault Tolerance makes fault tolerance mechanisms

easier to maintain and ensures higher modularity of the source

code.

Keywords—fault tolerance; maintainability; maintenance;

software evaluation; aspect oriented programming;

I. INTRODUCTION

Software maintainability is central in reducing maintenance
costs and decreasing the downtime in case of system
modification or, at worst, in case of system failure. However, it
often happens that maintenance actions unintentionally
introduce new bugs and faults due to system complexity. To
avoid or at least minimise such occurrences, modules of the
system should not be significantly dependent on each other. In
addition, each module should be responsible for certain
functionality in such a way that similar operations are not
scattered across the system. This good practice is usually
followed when implementing the functional system features,
such as business logic or data access. The situation with non-
functional features is, however, different. The source code
responsible for diagnostics, security or fault tolerance (FT) is
often distributed across the system, leading to code duplication
or tangling with the code responsible for functional concerns.

In many cases FT functionality is not centralised and each
module performs error handling and fault handling
independently, even though the errors are related to the entire
system. This makes FT mechanisms more difficult to
understand, and their adjustment and modification more time-
consuming, and ultimately does not support system modularity.
Good maintainability, by contrast, means that any
modification, be it repairs or adding a new functionality would
require an anticipated amount of time and effort.

In our previous studies, we proposed a vision of Holistic
Fault Tolerance (HFT) [1] and a detailed description of the
HFT architecture [2]. The former pursued two main goals.
First, it would allow developers to design and maintain
complex reliable applications in a more efficient fashion than
the conventional structuring techniques by supporting a
disciplined and systematic way of capturing and modularising
the cross-cutting functionalities related to error detection and
error recovery. The second goal is to achieve an efficient
system operation based on reasoning about the interplay
between reliability, performance and resource utilisation at the
system level rather than at the level of individual system
components or any other structuring units used (such as layers,
classes, etc.). In this paper, we address the first goal and, more
specifically, report on the evaluation of HFT maintainability.

In this study, we provide an experimental evaluation of FT
code maintainability in a software application with the HFT
architecture. This architecture was implemented using Aspect-
Oriented Programming (AOP), more specifically an AspectJ
AOP extension of Java language [3]. To evaluate the HFT
approach, we implemented two versions of the same
application. The first one is based on the HFT architecture with
AOP, whereas the second was implemented using standard
object-oriented programming (OOP) techniques. After that we
carried out a set of experiments on both versions of the
application. During the experiments, a number of FT-specific
changes were made in the source code of both applications.
The experimental results showed that in the majority of cases
the HFT architecture is more maintainable with respect to the
FT-related modifications and provides better modularity.

In this work, we mainly focus on small and medium scale
software applications; this is assumed when we reason about
the HFT architecture. Our ongoing work is to extend the HFT
scalability to ensure that HFT can be applied to a large-scale

This work is supported by the EPSRC PRiME EP/K034448/1 and MRC

Newton001 MR/M026388/1 projects.

system, encompassing different layers of the system stack,
from hardware to software. However, in this case the HFT
architecture would require more complex design and
implementation, which are out of scope of this paper.

The HFT approach does not involve the introduction of
new or the change of the existing well established techniques
[4]. The idea is to support reasoning about the system FT at the
system level rather than at the level of individual units and
apply the error detection and recovery techniques at system
level to make FT-related design more maintainable, modular
and reusable. We should note here that FT and maintainability
concepts are closely interconnected. FT is a means of
dependability, whereas maintainability as an attribute of
dependability [5]. The HFT approach focuses on both concepts
to ensure dependable operation of the system.

The main contributions of this paper are:

 An experimental evaluation of the HFT architecture.

 The AOP implementation of the HFT architecture.

The rest of the paper is organised as follows. Section 2
provides the background of the relevant areas. The HFT
architecture and its AOP implementation is described in
Section 3. The experiment setting is explained in Section 4.
Evaluation and discussion of the obtained results is provided in
Section 5. Concluding remarks and future plans are given in
Section 6.

II. BACKGROUND

In this section we discuss the basic concepts of
dependability and the main principles of high-quality software
engineering. We analyse the existing approaches to evaluating
the reusability, modularity and changeability of program code.
The state-of-the-art studies of the centralised FT management
and approaches to using AOP for the implementation of the
system FT are examined and compared with the HFT
approach.

A. Taxonomy of dependability

The main concepts and the taxonomy of dependability are
introduced in [4]. Dependability is defined as “the ability of a
system to avoid service failures that are more frequent or more
severe that is acceptable”. Fault tolerance is a means of
dependability, which prevents the system failure in the
presence of faults. FT consists of error detection, error handling
and fault handling. Maintainability along with availability and
reliability is an attribute of dependability. Maintainability
represents ability of modifications and repairs. Maintenance, in
turn, comprises all modifications of the system during the use
phase of system life cycle. There are four forms of
maintenance: corrective, preventive, adaptive and
augmentative. The first two are related to repairs, whereas the
last two are applied for modifications. The goal of corrective
maintenance is to remove faults that were isolated by fault
handling. The difference between FT and maintenance is that
the latter requires an external agent. With regards to the HFT
architecture we focus on convenience of FT maintainability
and ensuring dependable system operation.

B. Principles of software structural quality

The principles that act as guidelines for creation of robust
and easily maintainable software systems are described further.

Abstraction is applied to deal with complexity of a
computer system. It allows the developer to work with data
objects without going to their implementation details. Each
object provides a simple interface, while intricate details of the
implementation are encapsulated.

According to Single Responsibility Principle [6] every
module should work on its own task and it should have
responsibility over a single part of the software functionality.
In addition, in case of modifications, the module should have
only one reason of change. If the module has more than one
reason of change then it should be split in two or more
modules.

Open/closed principle [7, 8] implies that software modules
should be open for extension but closed for modification. This
principle ensures that a single change in one module does not
cause the changes in dependent modules. Moreover, OCP
guarantees that the system functionality is not corrupted after
the extension of the program. Thus, it is more preferable to
add new code rather than modify or delete an existing code.

Coupling and cohesion usually are considered together [9].
The former describes interdependencies between modules,
while the latter illustrates how the elements of the module are
related to each other. Developers are expected to provide high
cohesion within each module and loose coupling among
modules to reduce complexity, improve readability and support
maintainability of the software. Software modules should be
easily replaceable in such a way that other parts of the program
do not require significant changes after these actions. This task
is much easier when the modules are loosely coupled with each
other. High cohesion, in turn, means that similar functionality
should be placed in one module. This concept is a very good
argument why FT functionality of the system should be placed
in a separate module rather than partially implemented by each
individual module.

Separation of concerns (SoC) [10] is a design principle
assuming that computer program should be divided into
distinct features to ensure modularity of the program code.
Each of these features or concerns represents a single piece of
interest in the program, such as business logic, database access
level, user interface, API for external clients. However, some
concerns are dispersed across different part of the program.
These crosscutting concerns affect the entire system and
cannot be distinguished straightforwardly. Various information
loggers are a typical example of crosscutting concerns. In
object-oriented design these concerns can create high degree of
tangling and affect modularity of the program. AOP is applied
to assist in the separation of crosscutting concerns by
encapsulating them into aspects. There are academic and
industrial studies [11] referring to FT as a crosscutting concern.
For example, error handlers should be reused rather than copy-
pasted, whenever it is possible and practical. Hence, when an
error affects the whole system but not a single component it
should be handled by a designated system-wide action but not

by the component itself. Throughout this paper we consider
system-wide FT as a crosscutting concern.

Code reuse principle implies that it is good practice to use
an existing functions, patterns and modules in order to reduce
redundancy, decrease development time and improve
maintainability.

C. Existing holistic approaches to fault tolerance

A three-layer architecture for the FT control is introduced
in [12]. These layers are control, detection and supervision.
The first layer is responsible for controlling sensors and
actuators that check faulty conditions. The second level
contains detectors for each fault effect and corresponding
effectors implementing reconfigurations and remedial actions
initiated by autonomous supervisor from the third layer. To
achieve high availability and avoid the system failure, authors
prefer to apply reconfiguration of the system after fault
detection rather than increased robustness with performance
overheads. In this work authors do not consider separate
modules that are responsible for performance monitoring and
error handling.

System Health Monitoring Unit is used by network-on-chip
many-core system [13]. This unit has a holistic view of the
health status of the system components. Mapper/Scheduler
Unit generates mapping and scheduling solutions for each fault
configuration. This approach is bound to the specific network-
on-chip architecture and may be not suitable for other
architectures such as software applications

Study [14] aims at providing high availability for the
request-oriented distributed system using CrossCheck holistic
approach, which extends state-machine replication. This
approach employs majority voting based on the hash values of
the results, but not on the results themselves to reduce the
message size. If the difference is detected by voting, the faulty
replica is recovered by the special recovery message. AOP is
applied for the protection of critical state-objects to deal with
arbitrary state corruption. Experiments proved low
performance overhead of this solution. The CrossCheck
intended to optimise performance, but in comparison with the
HFT approach it does not consider the tradeoff between
reliability and performance.

D. Metrics of for the source code evaluation

A number of metrics for the object-oriented design are
proposed in [15]. These metrics illustrate the complexity of
class methods (Weighted Methods per Class), coupling
between classes in the package (Coupling between object
classes) and cohesion illustrating cohesion of the classes (Lack
of Cohesion in Methods, which implies that class should be
divided into subclasses to reduce complexity of the original
class).

Metrics of AOP code are considered in [16]. These metrics
comprise OOP metrics and AOP-specific metrics, such as
number of modules affected by the given aspect (Crosscutting
Degree of an Aspect), number of aspects whose advices could
be triggered by operations in a given module (Coupling on
Advice Execution).

E. AOP for the implementation of fault tolerance

Regarding the separation of crosscutting concerns AOP is
applied to improve modularity because the same entities will
be placed in one module (or aspect in AspectJ). There has been
research that showed feasibility and benefits of the
centralisation of FT management. In the majority of the
examples FT is considered as a crosscutting concern and AOP
was employed for the implementation of the system FT. In [17]
the quantitative assessment of exception handling as aspects is
provided. The author considers the benefits of using AOP for
modularisation of exception detection and exception handling.
AOP allows the developer to lexically separate the exception
handling code from the normal application code making that
the changes in the AOP code will be less intrusive and much
simpler. However, the limitation of AOP is that it is not
possible to represent global properties of exception control
flows. In addition, there are not usable abstractions for
composition and reusing of pluggable exception handlers.

Paper [18] provides an analysis of the claim that AOP
facilitates the modularisation of exception handling
mechanisms. Authors state that majority of software
development methodologies do not give consideration to the
design of a system’s exceptional behaviour. It is shown that in
some cases AOP could even deteriorate the quality of the
system. The main result of the study is that AOP will not
improve FT in the system with bad architecture. However, it is
able to facilitate the structure of well designed systems by
separating normal and exceptional activities of the system.
Two main contributions of the paper are based on an interplay
between AOP and error handling. The first is classification of
exception handling code in terms of factors that make influence
on aspectisation. The second is analysis of interactions
amongst these factors.

Feasibility and evaluation of using AOP for software
implemented hardware FT (SIHFT) is presented in [19].
Authors offer to apply AOP in order to avoid tangling of
SIHFT code with code related to the main functionality of the
program. Fault coverage and performance penalty were used to
assess SIHFT based on aspects. According to the experimental
results AOP is convenient for the programs with SIHFT. The
authors focus mainly on hardware FT that is implemented in
software, however they do not consider FT of the entire
system. In addition, this approach does not assume centralised
coordination.

Paper [20] estimates the impacts of using AOP and
compares AOP with other techniques. The authors measure
memory consumption and execution time overhead of the
automotive brake controller application after introducing FT
mechanisms represented by time redundant execution and
control flow checking. These software mechanisms are
intended to deal with hardware faults. The implementation is
done at a source code level by three approaches: AOP, source
code transformation and manual programming in C. Software
implemented FT was preferable since it allows the designers to
minimise the cost of redundancy by using self-checking and
internally fault tolerant electronic control unit (ECU) instead of
replicating several ECUs. Authors analysed the pros and cons
of the AOP for systematic and application specific

implementations. At the function level, FT mechanisms have a
very high degree of tangling. This is the reason why AOP
introduces significant performance overheads for systematic
implementations. However, when knowledge of the application
is leveraged, the overheads of using AOP are similar to those
caused by manual programming in C, but AOP is more
preferable for the developer since it provides the separation of
crosscutting concerns.

Research experiments evaluating the advantages and
disadvantages of explicit exception flows and implicit
exception flows using three different exception handling
mechanisms based on Java, AspectJ and EJFlow are presented
in [21]. AspectJ provides a way to distinguish normal and error
handling code but only syntactically (not semantically). In turn,
the EJFlow exception handling mechanism introduces two
notions: explicit exception channels and pluggable handlers.
An explicit exception channel abstracts the flow of exception
from the rising site to the handling site, whereas a pluggable
handler is a special exception handler that could be bound to
methods, classes and packages. The experiments showed that
exception channels and pluggable handlers provide more
robust and flexible exception handling. Therefore, the EJFlow
abstractions facilitate software maintainability and make
exception control flow more understandable.

Analysis of these studies showed that it is feasible to use
AOP for the implementation of FT. However, the developer
should carefully pick up the advices, which will be executed
when certain join point is reached.

III. HFT ARCHITECTURE AND IMPLEMENTATION

In our previous studies [1], [2] we introduced the concept
of the HFT and provided the architectural pattern for the design
of the HFT. In this section, we focus on the implementation
details of each element of the HFT architecture with assistance
of AOP.

The typical software application based on the HFT
architecture consists of a number of functional components
satisfying functional requirements and the HFT part, which is
responsible for the dependable and efficient operation of the
application. The HFT part includes the HFT controller and
several HFT agents.

A. HFT controller

The HFT controller is the central element of the HFT
architecture. It coordinates system-wide FT strategies and
distributes available computer resources among the application
components. In addition, it performs reconfiguration of the
application components if it detects that application can operate
faster or more reliably. The HFT controller consist of three
parts: static data storage, dynamic data storage and decision
maker. Static data represents predefined HFT policies. That
includes expected application performance and reliability, fault
assumptions of the application (expected errors), available
system resources, general structure of the application
components and conditions for application reconfiguration.
Dynamic data is the information about current system state,
which includes performance characteristics of the application
components, error rates in critical functions and diagnostic

information. This data is supplied by the HFT agents. Decision
maker is responsible for reconfiguration and fault handling in
the application. Moreover, it chooses the most suitable error
recovery action for the error in the application component that
should be handled holistically. These decisions are made based
on static and dynamic data.

B. HFT agent

The HFT agent in a special auxiliary object assisting the
HFT controller. Each HFT agent is responsible for monitoring
certain non-functional feature, such as performance or error
handling in one or more application components. The HFT
agent monitors, and if needed, intervenes in the control flow of
critical functions in application components. The HFT agent
consists of monitoring logic, intervention logic and local
decision maker. Monitoring logic defines which members of
the application components will be monitored by the agent.
Monitoring does not involve any changes of the state inside the
application components. Intervention logic determines how the
control flow inside monitored functions will be affected by the
HFT. Local decision maker of the HFT agent communicates
with the HFT controller. Local decision maker distinguishes
the data that should be transmitted to the HFT controller and
the data that can be processed locally. Some HFT agents do not
implement intervention logic if they perform only monitoring
actions, for example performance monitoring or function calls
counter.

C. The HFT controller and the HFT agetns

The HFT agents are intended to simplify the development
and implementation of the HFT controller. The HFT agents
get the information from monitored system components,
transform it to the format suitable for the HFT controller and
transmit this information. Data mapping to the HFT controller
format is necessary to avoid the tangling of the HFT controller
with encapsulated details of monitored components. Otherwise,
the scalability of HFT controller will be deteriorated. To
improve performance and avoid bottlenecks in the HFT
controller, the HFT agents should filter the information and
send only an important data.

D. The HFT agents and application components

The HFT agents are aware about the inner structure and
encapsulated implementation details of the monitored
application components, however the application components
are implemented without knowledge about the HFT agents. On
the one hand, this approach violates abstraction and
encapsulation principles because the HFT agent is significantly
dependent on the structure of monitored component. But from
other hand, it assists in the separation of crosscutting concerns.
We do not offer to use the HFT agents to amend functional
behaviour of the application component. Instead, we propose to
use the HFT agents to simplify the management of crosscutting
concerns. Thus, the problem of implicit coupling between the
HFT agent and monitored component is overlapped by better
modularity allowing the developer to avoid code tangling and
improve the understanding of the application FT techniques.

E. The HFT controller and application components

In the application with the HFT architecture, some
application components should provide interfaces for the HFT
controller. These interfaces will be used by the HFT controller
for reconfiguration and fault handling. This is applied to deal
with an interplay between reliability, performance and resource
usage. In such a scheme the HFT controller does not need to
know the implementation details of the application
components, since it uses only a predefined interface and it is
aware only of general structure of the application. This link
between the HFT controller and application components is
supposed to be used only asynchronously. Decision maker of
the HFT controller is operating in a separate thread. Based on
the information from the HFT agents, it can detect that
operation of the application could be more efficient or more
reliable. In this case, the HFT controller sets the most suitable
configuration for the application component. If the application
does not have any reconfiguration possibilities or various
options of resource usage then the implementation of the HFT
architecture would be much easier, however in this case the
HFT architecture will only demonstrate maintainability
benefits. Reconfiguration is only available for those
components of the application that provide some redundancy in
their implementation. The HFT approach assumes that
acceptable frequency and severity of the service failures could
vary depending on user requirements or current system
settings.

F. Usage of the HFT architecture

Fig. 1 illustrates an abstract application based on the HFT
architecture. This application has seven functional components
(C1 – C7) that implement functional requirements of the
application and the HFT part (depicted in red colour)
consisting of the HFT controller and four HFT agents. For the
sake of simplicity connections between the functional
components are omitted. The HFT architecture considers four
groups of components depending on the way of interaction
between these components and the HFT part. Components in
the first group (C1, C2 and C3) are monitored by one or more
HFT agents and provide the interface for the HFT controller.
Thus, the given components can be used for the reconfiguration
of the application and it is useful to monitor their inner
operation to reason about the state of the entire application. The
second group (C4) of components is only monitored by the
HFT agent/s. The state of such components is useful for
holistic monitoring, however these components are not
reconfigurable. Dependency relation between the HFT agents
and application component is implicit for the component. Thus,
the application components do not know about the HFT agent.
Components from the third group (C5) are not monitored by
the HFT agents, but provide the interface for the HFT
controller. Such components implement various operation
modes and could be reconfigured when needed. However, it is
impractical to monitor or intervene into their operation with the
HFT agents. The fourth group (C6 and C7) of components is
not directly affected by the HFT architecture. This is
impractical to connect all components of the application to the
HFT part. It is necessary to choose only those components,
which affect the operation of the entire application and are able
to provide important information about the application state.

Fig. 1. The system based on the HFT architecture.

Various HFT agents can be applied in the application
architecture depending on the type, size and requirements of
the application. Typical examples of the HFT agents are: Error
Handling Agent, Performance Agent, Diagnostics Agent.

An important question regarding this architecture is how to
avoid a single point of failure, since FT strategies and system
reconfigurations are managed by the centralised HFT
controller. One of the options is to ensure dependability of the
HFT controller and the HFT agents using standard FT
techniques [5]. The complexity of this implementation depends
on application criticality. Apart from this option, we insist on
the implementation of the “default” application behaviour for
the case when the HFT controller or one of the agent fails. In
this case the application would operate not optimally and
possibly less reliable, but the failure will be avoided. The main
thing is detection of the problems with the HFT elements and
well-timed correction to return the application to the efficient
operation.

G. AOP for the implementation of the HFT

The developer can choose various options for the
implementation of the HFT, such as static classes,
computational reflection and AOP. All them have advantages
and disadvantages. Static classes could be more understandable
for the developers that do not have an experience of working
with reflection and AOP. However, the implementation of the
HFT with static classes do not solve the problem with code
tangling. Computational reflection can facilitate
modularisation of the program and provide the same benefits
for software maintainability as AOP. However, reflection
works in runtime and could significantly affect performance of
the application.

AOP is intended to increase modularity of the applications
by the separation of crosscutting concerns. This is done by the
extensions of program code behaviour in certain points of the
application. At the same time the code itself is not modified
since new behaviour is coded at separate modules – aspects.
We propose to apply AOP for the implementation of the HFT
architecture because AOP facilitates modularisation of the HFT
agents, which is a basic requirement for the HFT architecture.
Moreover, AOP has the benefit of composing the HFT agents
and components of the application at compile time, but not in
runtime. In the majority of cases “around” advice [3] would be
the most suitable option for the implementation of monitoring
and intervention logic of the HFT agents. For example, the

performance monitoring of the crucial function could be
implemented as shown in Fig. 2. Holistic error handling is
shown in Fig. 3. It should be noted that functional behaviour of
the critical function is not tangled with performance monitoring
and error handling. The developer should choose the functions
that will be monitored with around advice. It is practical to
choose those functions, which significantly affect performance
and reliability of the application. This approach makes the
function more readable and easily understandable.

CriticalFunctionResult around(CriticalClass mainLogic,

 CriticalFunctionArguments arguments) :

 Pointcuts.criticalPointcut(mainLogic, arguments){

 long startTime = System.currentTimeMillis();

 CriticalFunctionResult result =

 proceed(mainLogic, arguments);

 long execTime = System.currentTimeMillis() - startTime;

 hftController.updatePerformanceInfo(execTime);

 return result;

}

Fig. 2. Performance monitoring advice.

CriticalFunctionResult around(CriticalClass mainLogic,

 CriticalFunctionArguments arguments)

 throws Exception :

 Pointcuts.criticalPointcut(mainLogic, arguments){

 int attemptNumber = 0;

 while(true) {

 try {

 attemptNumber++;

 CriticalFunctionResult result =

 proceed(mainLogic, arguments);

 return result;

 }

 catch (Exception ex) {

 if (attemptNumber >= NumberOfAttempts)

 return CriticalFunctionResult.GetEmptyResult();

 RecoveryAction ra =

 hftController.getRecoveryAction(ex, attemptNumber);

 if (ra == RecoveryAction.Retry)

 continue;

 else if (ra == RecoveryAction.Skip)

 throw exception;

 else if (ra == RecoveryAction.TryNextAlgorithm)

 return mainLogic.alternateFumction(arguments);

 }

 }

}

Fig. 3. Error hanling advice.

The main benefit of the HFT architecture is centralised
access to crosscutting functionality as performance adjusting
and error handling. Majority of maintenance changes relating
to these features will be made in corresponding aspect that is
applied for the implementation of the HFT agent. HFT
architecture assist in following the single responsibility
principle. Therefore, functional components are dealing with
their direct functional responsibilities, whereas the
management of FT, performance and resource utilisation is
given to the HFT part of the application.

IV. EXPERIMENTS

In section 2 we considered the studies describing the usage
of centralised FT mechanisms and applying the AOP for the
implementation of the FT. In many cases, FT is addressed as a
crosscutting concern of the application that is why it should be
separated from functional modules to improve the modularity.
We claim that the HFT can be beneficial for small and medium

scale software applications, especially for those, which are
adjustable based on an interplay between reliability,
performance and resource utilisation during runtime. However,
the counterargument is that the HFT would make it harder to
maintain the application. The problem could arise due to an
implicit coupling between the HFT agents and application
components, significant dependence of the HFT controller on
the HFT agents and application components, global knowledge
of the HFT controller about the application. In addition, the
HFT agents could amend the control flow of the monitored
functions, which is not always considered as a benefit for the
maintainability of the application.

The aim of this work is to gain empirical knowledge of the
positive and negative effects of the HFT architecture on the
software maintainability. To show the feasibility of applying
the HFT architecture we carried out the experiments evaluating
the HFT architecture. During these experiments, we performed
a longitudinal study and analysed the effects of the HFT on
software maintainability.

The evaluation is based on comparison of the efforts
required for the implementation of the modifications in two
versions of the same application. The first version is
implemented with the AOP approach, whereas the second
version uses only the standard object-oriented approach.
Although the implementations are different, these applications
are functionally identical. For simplicity, we call the AOP-
based application as the HFT-version and the OO-based
application as the non-HFT version.

We have chosen this type of evaluation since the OOP is
very wide-spread in modern software development. Thus, we
decided to compare the maintainability of the “standard”
solution implemented in OOP-style and proposed solution that
is still OOP-based, but with the HFT functionality
implemented with AOP. We designed the experiments to
understand the challenges that could be faced by the developers
during the maintenance of FT functionality in the HFT
architecture. In addition, we can reason about the complexity of
the HFT maintenance in comparison with popular OOP
approach. The modifications chosen for the experiments
represent typical changes and bug fixes in the FT mechanisms
of the medium scale software application during maintenance
works. The evaluation should show, how significantly the
source code of both applications is affected by each
modification. In addition, it should show how easy is it to find
the place (class and function) where the modification should be
done. It should be noted that more changes in the source code,
especially related to modifications or deletions of the code
could introduce new bugs. This is the reason why such
modifications are considered as non-preferable in comparison
with adding of new code. However, less new code in a
centralised place means less effort required for maintenance.
Thus, the experiments will show the differences between two
versions and reveal advantages and disadvantages of the HFT
architecture for maintainability of FT techniques.

A. Experimental setup

We have chosen the application for the recognition of the
UK number plates [2]. The functional part of both versions is

the same. The UML diagrams of both applications are shown
in Fig. 4 and Fig. 5. The application receives the set of images
as an input for recognition. After that the images are sent to the
Initial Image Processing (IIP) component where these images
are processed concurrently. This component makes initial
processing of each image and tries to find the number plate
area on the image. There are two algorithms for this task:
rectangle detection based on OpenCV and HAAR cascade [22].
If the number plate is found it is cut from the image and sent to
Number Plates Queue (NPQ). The Optical Character
Recognition (OCR) component checks the NPQ and if it is not
empty the OCR component takes the number plate cutout and
performs the recognition of the number plate. The OCR
component has two algorithms for this: Tesseract [23] and
number plate recognition algorithm described in [24]. The
former algorithm recognizes the entire string, while the latter
algorithm requires to separate the symbols of the number plate
string before the recognition.

Fig. 4. Case study (the HFT version) application.

Fig. 5. Case study (the non-HFT version) application.

TABLE I. FAULT ASSUMPTIONS OF THE APPLICATION

Error
The HFT

detection

The HFT

recovery

The non-

HFT

detection

The non-

HFT

recovery

Number plate

is not found

EH agent EH agent
and HFT

controller

IIP
component

IIP
component

Exception in

the library

EH agent EH agent

and HFT

controller

IIP or

OCR

component

IIP or

OCR

component

Number plate
is not

recognised

EH agent EH agent
and HFT

controller

OCR
component

OCR
component

Injected CPU
exception

EH agent EH agent
and HFT

controller

IIP or
OCR

component

IIP or
OCR

component

Recognition

fail

EH agent EH agent

and HFT
controller

“image”

object and
IIP and

OCR

component

IIP and

OCR
component

Since we use third party algorithms, we cannot be sure that
the functions from these libraries will not fail. One problem is
impossibility to detect the required data on the image, which is

not unusual situation for the image recognition operations.
Another problem is exception in the third-party library.
Redundant algorithms for IIP and OCR stages were introduced
to deal with these problems. These fault assumptions (Table 1)
are addressed differently in two applications. In the HFT
version, there are the HFT controller, the Performance agent
and the Error Handling agent. In the non-HFT version the FT
mechanisms are distributed across the application components
and do not have a centralised controller. Redundancy of the
algorithms is applied for fault handling and error handling.

B. Metrics of maintainability evaluation

The following metrics of the maintainability evaluation
were chosen: lines of code affected, functions affected, classes
affected. Each metric consists of three parts. The first is
Quantity of Added (lines of code, functions, classes). This
metric is less critical and more preferable since we only added
new functionality and we did not change existing functionality.
The second metric is Quantity of Modified. In this case, these is
a need to check all places where the modified code (e.g.
functions) is used or called. The third metric is Quantity of
Deleted. If there are deleted functions, it is inevitable that some
parts of the program require modifications in the places where
deleted functions were called.

C. Modifications of the applications

When both versions were ready we defined and
implemented a number of modifications related to the FT
functionality. During the experiments, we tried to avoid the
changes in the functional part of the application since the main
goal of these experiments is to evaluate the maintainability of
the FT-related mechanisms in the HFT architecture.
Modifications that were made in both version of the application
are described below.

1) Changes in the settings that are used in FT

mechanisms.
Sometimes, the setting that define behaviour of FT

mechanisms should be updated. We decided to check whether
there is a difference between the HFT and the non-HFT
versions.

2) Centralisation of thread management for IIP and OCR

components.
In some software applications, there is no a special module

for thread management since a chosen framework is sufficient
for thread management without the effort from the developer.
However, if the application is multithreaded and performs a lot
of concurrent operations then it is inevitable that it will require
a thread management module. In the HFT version the HFT
controller is responsible for crosscutting concerns, so it is the
best place to manage and distribute the threads among other
application components. In the non-HFT version, a new class
was introduced. Main motivation for this modification is the
separation of concerns, since it is not the task of the functional
component to deal with thread allocation and distribution.

3) Handling of injected CPU error.
In the case study presented in [2] we introduced the CPU

error to analyse the feasibility of handling hardware errors and

exceptions at the software layer with the HFT architecture.
This error is not real CPU error. It is injected with specified
rate inside critical functions of IIP and OCR components. In
the given modification, we decided to consider two options
regarding the CPU error. The first option is to introduce the
CPU error to both applications and to apply system-wide action
for the recovery of the CPU error. Before this modification
either version did not have the any traces of the CPU error. In
the HFT version we added handling of the CPU error to Error
Handling Agent with assistance of the HFT controller. In the
non-HFT version this error is handled mainly by the
component (IIP or OCR) where it was detected, but component
requests current recognition success rate to choose the most
suitable action for error recovery. The second option is almost
opposite. The handling of the CPU error that was introduced at
the previous step is moved to the component (IIP or OCR)
where this error was detected. This experiment represents
transformation of global error handling to local error handling.
Therefore, the CPU error became hidden for the external
modules and will be recovered locally.

4) Logging diagnostics information.
For this modification, we made the changes in such a way

that each significant stage of image processing, calls of critical
functions and exceptions in critical functions are logged. In the
HFT version we added Diagnostics Agent, which is
implemented as an aspect. For all functions in the application,
which should be logged, we added corresponding before or
after advice. All the modifications are concentrated in the
single aspect. For the non-HFT version we added static class
Logger. The class itself is much shorter than diagnostics aspect.
However, we had to modify all the functions, whose calls
should be logged. Switching off the diagnostics information is
implemented approximately equally. However, if we need to
remove the diagnostics, for the HFT version, we will need to
delete or modify only one aspect, whereas for the non-HFT
version we will need to modify a set of functions by deleting
the lines of code with Logger class calls.

5) Reconfiguration logic based on operation mode.
Operation mode is a flexible option intended to provide

different quality of the service in various conditions. It is
logical that error handling may be implemented differently for
various operation modes. In reliability mode, it is necessary to
apply all available means to recover the error, while in
performance mode the error could be skipped in some cases.
The latter option as applicable for the errors, which will not
affect the expected reliability of the system. In the HFT
version, the operation modes are managed by the HFT
controller. In the non-HFT version, the code related to the
operation modes is managed by the designated class. Originally
IIP and OCR components are able to work in two operation
modes: reliability and performance. Reliability mode means
that for the specified performance the system should be as
reliable as possible, while performance mode assumes that for
the required reliability it is necessary to finish all tasks as fast
as possible.

6) “Complex” error detection.
In many cases error detection is not a trivial task. Very

often the developer needs to check several components or
analyse the result of several functions in order to detect the

error. This modification involves the detection of the error by
checking the result of two functions. Low quality of the result
in IIP component and consequent low probability of successful
recognition in the OCR component are considered as an error.
It should be noted that these two conditions separately are not
supposed as errors. Error recovery involves re-processing of
the image with better settings at the IIP component. In the HFT
version Error Handling Agent has the trace of the processing
for each image. Thus, the detection for the given situation can
be added at OCR stage. Error recovery action is requested from
the HFT controller. For the non-HFT version we added the
information about image processing steps to the object that
stores the image.

V. EVALUATION AND DISCUSSION

In this section, we discuss the results of the conducted
experiments that measured a set of realistic modifications in the
FT-related code. These experiments show advantages and
limitations of the HFT architecture with respect to the
modifications of crosscutting concerns related to fault
tolerance.

According to the open/closed principle [7, 8] it is better to
add new code rather than modify or delete the existing code.
Thus, if some segment of code (e.g. new line, function or class)
was added, it is more preferable than modification or deletion
of the existing code. This is how we evaluate the modification
in our experiments. Experimental data is presented in table 2
(the HFT version) and table 3 (the non-HFT version). A, M, D
column headers mean added, modified and deleted metrics
correspondingly.

The first modification relating to the changes in the settings
was the simplest with very expected result. In both cases, it was
necessary to modify only one file and for each setting only one
line of code was modified. Thus, the change of N settings
requires the change of N lines of code. This modification alone
cannot be used for reasoning about the HFT architecture.

Thread management modification metric did not show
significant differences between two versions. This modification
was motivated by the separation of concerns. In addition,
thread management could affect performance of the
application. We attempted to separate image processing
activities and thread management activities in the functional
components. The reason that there is not difference between
two versions is that the code managing the threads was already
well structured. After modification, this code was placed to the
designated module in both versions. AOP was not directly
applied for this task in the HFT version. The only use of AOP
in this modification relates to performance monitoring in
Performance Agent.

It is not a trivial question where the error should be
handled. Many approaches propose to recover the error in the
place where it was detected. However, the component that
detected the error is not always aware how this error would
affect the application. This leads to the situation when error
recovery is implemented to deal with a worst-case scenario, or
sometimes the error is not taken into account. At the system
component, we do not have enough information about the best
option for error recovery. The choice significantly depends on

the rate of this error. If the error rate is stable and do not have
big deviations from the average value, it would be more
convenient to recover the error where it was detected.
However, when the error rate is not constant and the fault
causing the error is intermittent then it would be more
convenient to recover the error holistically taking into account
the entire system state. When the developer has more
information about the error, the recovery would be much more
efficient. If the error will not significantly affect the system
operation, it could be skipped. Such a scenario is acceptable for
the systems that process large amounts of data and there is
allowance for the rate of failed operations.

Two following experiments were used to evaluate the
efforts required for the implementation of different approaches
of CPU error handling. The first approach is handling of the
CPU error by holistic action. The HFT version was much
better for this modification. We added only 7 LoCs in the HFT
version, whereas the non-HFT version required 32 LoCs.
Moreover, two functions were added to the non-HFT version.
The reason of the success of the HFT version is that it already
had a centralised mechanism for handling various errors. Error
handling is performed by Error Handling Agent, which
requests suitable recovery action at the HFT controller. So, we
just added information about the CPU error to this centralised
handler. In the non-HFT version we implemented CPU error
handler in all places it could be raised. The second approach is
local handling of the CPU error. Thus, the CPU error handling
was moved to the component where this error was detected.
External classes will not be aware about this exception. The
metrics for both application versions are not very different. The
HFT version required to add 16 LoCs, whereas no new code
was added to the non-HFT version. However, only 5 LoCs
were deleted in the HFT version, while in the non-HFT version
we deleted 10 LoCs. In addition, we deleted 2 functions in the
non-HFT version. All other metrics are same. Hiding (or
suppressing) of CPU exception inside the class, where it was
detected does not demonstrate the benefits of the HFT
architecture because the goal of the HFT is opposite. The
problem for the HFT architecture here is that CPU exception
was handled by Error Handling Agent and by the HFT
controller. The change required to delete all this code and
handle the exception inside IIP and OCR classes. We will get
the benefits if we allow the class to propagate this exception
and then handle it with the HFT controller. This was shown in
the first approach of CPU error handling.

Logging and grouping of the diagnostics information is an
important part the computer system especially at the initial
stages of system exploitation. However, the source code
responsible for saving and processing of the diagnostics
information does not contribute to the system functionality.
Moreover, if this code is tangled with functional code it is
difficult for the developers to search the bugs and add new
features in the system. Thus, there is a need for textual
separation of the functional and diagnostics code. In addition,
there should be the possibility to switch off the diagnostics if
the problem is resolved or in order to provide better
performance during high system load. AOP provides such
features. The developer can specify which information should
be logged without modifications of the functional code. In the

OOP approach, it is necessary to add calls to special object
whenever this information should be logged. In our
experiments related to logging the diagnostics information the
HFT-version was better by majority of the metrics. It loses by
lines added and functions/aspects added metrics 106 against 60
and 17 against 2 correspondingly. However, the HFT version is
simpler and more intuitively understandable, since all changes
are made within one file, while in the non-HFT version case we
needed to modify 6 files and 13 functions. The code in the non-
HFT version became less readable. Even though the HFT
version requires more lines of code, it was necessary to add
only 2 functions and 15 AspectJ advices. No modifications of
the functions or lines of code is required and only one aspect
was added. If we consider only exception logging, then the
non-HFT version will lose by the “lines of code” metric as
well.

Add reconfiguration logic. The HFT version already had
some functions that were reused for this change. The non-HFT
version required new class with new functions. Almost all
metrics are better for the HFT version. Moreover, it requires 3
times less lines of code.

TABLE II. THE HFT VERSION

Changes
Lines of code

Functions /

Advices

Classes /

Aspects

A M D A M D A M D

Settings
0 N 0 0 0 0 0 1 0

Thread management 32 17 5 7 12 5 0 7 0

CPU exception

(holistic handling)

7 9 0 0 10 0 0 3 0

CPU exception

(local handling)

16 2 5 0 3 0 0 3 0

Diagnostics info 106 0 0 17 0 0 1 1 0

Reconfiguration
logic based on OM

24 2 0 1 2 0 1 1 0

“Holistic” error

detection
47 22 3 3 8 0 0 3 0

TABLE III. THE NON-HFT VERSION

Changes
Lines of code

Functions /

Advices

Classes /

Aspects

A M D A M D A M D

Settings
0 N 0 0 0 0 0 1 0

Thread management 38 15 5 8 12 5 1 6 0

CPU exception

(holistic handling)

32 9 0 2 10 0 0 3 0

CPU exception
(local handling)

0 2 10 0 3 2 0 3 0

Diagnostics info 60 0 0 2 13 0 1 6 0

Reconfiguration

logic based on OM

75 0 0 4 2 0 2 1 0

“Holistic” error
detection

63 18 3 5 9 0 1 3 0

Complex (or holistic) error detection is a very typical
modification for modern software. System requirements are
constantly clarified and it is logical that in some cases, certain
errors could be detected not only by one component, but by

monitoring of two or more system components. Though each
state of the separate components is not considered as an error,
the combined states of the components are the error. This
experiment clearly illustrated the advantages of the HFT
architecture. The HFT version requires fewer new LoCs,
slightly more modifications in LoCs, fewer new and modified
functions.

Regarding the combined analysis of lines of code affected,
functions/advices affected and classes/aspects affected metrics,
modifications related to holistic error handling, introducing
reconfiguration logic and diagnostics clearly showed the
advantages of the HFT architecture. These modifications are
very likely FT-related modifications of the application and the
HFT-version was better for these modifications. The HFT
architecture will not give the benefits for handling of local
errors that are related to the inner operation of the application
components. However, even in this case the HFT architecture
based on AOP would not be worse than the standard OO
approach.

Some metrics such as cohesion, coupling, separation of
concerns and changeability do not directly depend on affected
LoC or functions. Changeability of the FT mechanisms was
mainly better in the HFT version. The HFT version provides
better cohesion with regards to performance and error handling
code. In the HFT version this code is not tangled with
functional code. Thus, it provides better cohesion in functional
components and in the HFT part. In the non-HFT version,
performance monitoring and error handling code is
significantly tangled with functional code, which increases
cohesion and decreases coupling.

The HFT version provides clear separation of performance
management, resource utilisation management, FT
management and operation mode management. In the non-HFT
version the separation of crosscutting concerns almost is not
supported. Due to the scope of the case study, it was
convenient to use one module (the HFT controller) to manage
all these concerns. For larger applications, it will make sense to
develop dedicated controllers for each of these concerns and
coordinate the functionality of these concern-specific HFT
controllers.

The HFT version introduces an implicit coupling between
the HFT agents and the monitored application components.
Certain modifications of the inner structure of the components
would require modification of the HFT agent. However, this is
the cost for better cohesion and separation of crosscutting
concerns.

In the proposed architecture, there are two types of
interaction between the HFT controller and application
components. The former link is asynchronous, which uses
public interfaces of the application components. When the HFT
controller starts reconfiguration of the application, it uses these
interfaces to make necessary adjustments in the application
components. Since the link is asynchronous, there is no high
risks of locks or bottlenecks. However, the latter link is
synchronous and it is implicit for the application component.
This interaction is initiated by the intervention logic of the HFT
agent, when the agent requests the HFT controller for suitable
action. Here is a risk of locks for performance-intensive

applications. These applications require a special attention to
the implementation of the synchronous part of the HFT
controller in order to avoid deadlocks and bottlenecks.

The evaluation showed that for the set of the changes used
the maintainability of the HFT version most of the time is
better than maintainability of the non-HFT version. In the
remaining cases, the HFT version required approximately the
same efforts as the non-HFT version based on OOP approach.
However, there are not any modifications for which the HFT
version is worse than the non-HFT version. It is very important
that the HFT version provides much better cohesion and
separation of concerns than the non-HFT version.

VI. CONCLUSION

During their lifetime software systems require various
maintenance works to add new features and fix the discovered
bugs. These modifications are related to functional and non-
functional features. In this study, we presented an experimental
evaluation of Holistic Fault Tolerance architecture based on the
typical changes of FT-related code. According to the
experimental results there are clear benefits of using the HFT
architecture implemented with AOP. In the most cases, the
HFT version is better for maintainability. Thus, the HFT
architecture can be applied to improve maintainability of FT
mechanisms in the application.

Currently we are working on the techniques that will
support the modelling of the HFT architecture for various
computer systems. The modelling is closely interconnected
with HFT efficiency evaluation, since the model will assist in
choosing of the components that interact with the HFT
elements. In addition, the model will allow the developer to
adjust the HFT elements and their link with application
components to achieve efficient operation of the application.

As a future work we consider developing adaptive holistic
fault tolerance that can self-tune by introducing or switching-
off the HFT agents and reconfiguring the HFT controller
depending on current system loading. This will help to ensure
the scalability of the HFT approach regardless of the system
size.

This study focuses on the experimental evaluation of fault
tolerance maintainability. Unfortunately, to the best of our
knowledge there is not much work in the area. Very often the
designers of new fault tolerance techniques rely on intuition
and experience when they claim the maintainability of these
solutions. It is our hope that this work will be helpful and
useful in demonstrating how this evaluation could be
conducted.

REFERENCES

[1] R. Gensh, A. Romanovsky, A. Yakovlev, “On structuring holistic fault
tolerance,” in Proceedings of the 15th International Conference on
Modularity. ACM, New York, USA, 2016, pp. 130-133.

[2] R. Gensh, A. Garcia, F. Xia, A. Rafiev, A. Romanovsky, A. Yakovlev,
“Architecting Holistic Fault Tolerance,” in Proceedings of the 18th
International Symposium on High Assurance Systems Engineering,
Singapore, 2017, pp. 5-8.

[3] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming,
Greenwich, CT, USA: Manning Publications Co., 2003.

[4] A. Avizienis, J. C. Laprie, B. Randell and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” in IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11-33, Jan.-March 2004.

[5] T. Anderson, P. A. Lee, Fault tolerance, principles and practice,
Prentice/Hall International, 1981.

[6] R. C. Martin, "Agile Software Development, Principles, Patterns, and
Practices," Prentice Hall, 2003, p. 95–98.

[7] B. Meyer, Object-oriented Software Construction, Upper Saddle River,
NJ, USA: Prentice Hall, 1988.

[8] R. C. Martin, “The Open-Closed Principle,” C++ Report, vol. 8, no. 1,
pp. 37-43, 1996.

[9] W. P. Stevens, G. J. Myers and L. L. Constantine, “Structured design,”
in IBM Systems Journal, vol. 13, no. 2, pp. 115-139, 1974

[10] E. W. Dijkstra, “On the Role of Scientific Thought,” in Selected
Writings on Computing: A personal Perspective, New York, NY,
Springer New York, 1982, pp. 60-66.

[11] Microsoft Patterns & Practices Team. (2009). NET Application
Architecture Guide, 2nd Edition. Microsoft Press.

[12] M. Blanke, R. Izadi-Zamanabadi, S. Bøgh and C. Lunau, “Fault-tolerant
control systems — A holistic view”, Control Engineering Practice, vol.
5, no. 5, pp. 693-702, 1997.

[13] S. P. Azad, B. Niazmand, J. Raik, G. Jervan, T. Hollstein, “Holistic
Approach for Fault-Tolerant Network-on-Chip based Many-Core
Systems,” CoRR, vol. abs/1601.07089, 2016.

[14] A. Martens, C. Borchert, M. Nieke, O. Spinczyk and R. Kapitza,
“CrossCheck: A Holistic Approach for Tolerating Crash-Faults and
Arbitrary Failures,” 2016 12th European Dependable Computing
Conference (EDCC), Gothenburg, 2016, pp. 65-76

[15] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” in IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476-493, Jun 1994.

[16] M. Ceccato, P. Tonella, “Measuring the Effects of Software
Aspectization,”, in Proceedings of the 1st Workshop on Aspect Reverse
Engineering, 2004.

[17] N. Cacho, “Supporting Maintainable Exception Handling with Explicit
Exception Channels,” PhD thesis, Lancaster University, 2009.

[18] F. C. Filho, A. Garcia, C. M. F. Rubira, “Extracting Error Handling to
Aspects: A Cookbook,” 2007 IEEE International Conference on
Software Maintenance, Paris, 2007, pp. 134-143.

[19] S. Karol, N. A. Rink, B. Gyapjas, J. Castrillon. 2016. “Fault tolerance
with aspects: a feasibility study,” in Proceedings of the 15th
International Conference on Modularity (MODULARITY 2016). ACM,
New York, NY, USA, 66-69.

[20] R. Alexandersson, P. Öhman, J. Karlsson, “Aspect-Oriented
Implementation of Fault Tolerance: An Assessment of Overhead,” in
Computer Safety, Reliability, and Security, Springer Berlin Heidelberg,
2010, pp. 466-479.

[21] N. Cacho, F. Dantas, A. Garcia, F. Castor, “Exception Flows Made
Explicit: An Exploratory Study,” In Proceedings of the 2009 XXIII
Brazilian Symposium on Software Engineering (SBES '09), Fortaleza,
Ceara, 2009, pp. 43-53.

[22] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software
Tools, 2000

[23] R. Smith, “An Overview of the Tesseract OCR Engine,” Ninth
International Conference on Document Analysis and Recognition
(ICDAR 2007), Parana, 2007, pp. 629-633.

[24] D. L. Baggio, S. Emami, D. M. Escrivá, K. Ievgen, N. Mahmood, J.
Saragih, R. Shilkrot, Mastering OpenCV with Practical Computer Vision
Projects, Birmingham: Packt Publishing Ltd., 2012.

	TR 1507 - Cover
	TR 1507 - Abstract
	TR 1507 - Bibliography
	Email - 1507

