


DISCUSSION 

Rapporteur: Alcides Calsavara 

Lecture One 

VI .33 

After the lecture, Professor Randell cited the quotation "A complex system that works 
evolves from a simple system that works", from the book Systemantics, by John Gall, 
remarking that Professor Rechtin did not say anything about such approaches as 
evolutionary acquisition, which seems like an alternative approach to the way he had 
described the several other alternatives to architecting. In response, Professor Rechtin 
said that the more extreme version of that is that "You build a clock by clock.". On the 
other hand, if you do not have an idea of what the end-architecture is, then we all know 
what happens in the building if you do that; you get things that in English we say "built 
like topsy" -- miscellaneous things are sort of added-on that mayor may not get a 
satisfactory ending result. So, although you would like to start with simpler things, with 
software modules, and you would like to take software modules and connect them 
together, unless you have some idea as to what the end-point is likely to be, some broad 
checking, some broad system functions, when you start to assemble all this you can very 
easily run into trouble. Well, it rums out that human error rate for alert awake dedicated 
thoroughly committed people is one percent. Figure out how many sofrware errors there 
are then in the individual miscellaneous pieces of software. And you may spend a long 
time with what is called "main laine", or something -- terms and euphemisms. And what 
you are really trying to do is to dig out all the errors which are natural in human beings. 
And when you put the machine together, the errors are in the machines, and you have the 
same problem. 

So, starting with simple systems is fine if you treat the simple system as a model for 
something you will go. Modelling is an abstraction; modelling is a heuristic, model is not 
reality. The trickery in a model is what you have excluded from your model; you have 
assumed in this model certain things and all the other things are regarded as unimportant. 
The colour of an automobile is probably not really that critical at first. Well, that was 
easy, but some other things might not be. That you can use the same tires on new 
automobiles as on old automobiles, that is not true. That you can have a better autobahn 
safety record with anti-block braking turns out not to be true. The Germans, 
unfortunately, have shown that anti-lock brakes increase the probability of failure 
accidents. The reason is something that the rest of the world might not understand but 
there is no speed limit on the German autobahn and it rums out that the Germans like to 
go as fast as possible. And they figured out that with anti-lock braking they can probably 
drive closer to each other. So they come faster and closer and an accident may happen. 
So, the simple systems have yet to be careful about what you are saying. There is a 
famous one called "no silver bullet in the software" and in essence it says: build things in 
parts which work and build on that and see if it works and if it works build on that and 
see if it works and if it works ... OK, as long as you know you are going there and not 
there. The architecting is their part of this. And it is better to do that at first. Then you can 
say "What is the simplest thing I can do which will demonstrate some aspects of the 
system function and can make it worth it" . 

Dr Aho asked Professor Rechtin to give some examples of what he considers well 
architected software systems or to give clues of some of the better software architects of 
the world today. Professor Rechtin answered that you may regard that as a generation 
problem and try to figure out how to make people use more sophisticated systems. He 
realized at the age of 60 that he was to old to learn software but not to tell software people 
something about systems. He could name the architects in a large number of other kind of 
systems but not in software. There were architects in the Apollo Program to the Moon, 
and they are list-able. He was one of the architects, using what we used to call 
architecting in 1960, and it worked. There were no architects in the Space Shuttle. And, 
as you know, it ran into difficulties because the first objectives and the end results were 



VI. 34 

not tied together very well. There is a long list of very successful complex systems in the 
text books. which leads to an interesting dilemma. There are lots of causes for failure. It 
is very difficult to say that a given system fails for one particular cause. As a maner of 
fact. one weak heuristic that we figured out. says that if you can design a system really 
well. You can probably stand one failure and not have a complete disaster. two is 
unlikely. That came out of the testing of aircraft, originally. 

If there is only a single cause of failure the pilot will recover and it will be al right. If 
there are two. the different consequences of failures interact and it becomes 
extraordinarily difficult for the human mind to untangle them in real-time. If it is three it is 
hopeless even after analysis. And the difficult part of failure analysis is not conceiving a 
failure that might have happened. but proving that all other possibilities could not. There 
is a kind of long entrance to success and failure in business that we do not know. There 
is one exception and that was the one that invented the mM 3/fJJ operating system. There 
are others but he was the architect and he did form a very small team. It was the first time 
that architecting teams were probably closest to a surgical team in the way they are to be 
formed. We have not seen those ideas seriously contradicted yet. 

Lecture Two 

During the lecture. while Professor Rechtin was explaining a diagram named "The 
Expanded Systems Waterfall". several questions related to it were raised. Firstly. Dr 
Kramer asked for a more detailed explanation about the box called "Real World". so 
Professor Rechtin answered that the real word is the one we mostly forget but it is the 
one that counts. It comes in and tells you things that you did not plan; that box includes 
such things as the unknown unknowns. You know you do not know all the information 
but you also know that you do not know that you do not know certain things. It is what 
happens when you do a test and something shows up and you say "Where would that 
come from?" . It came out from the real world. it came out of the interaction of people and 
things and circumstances. It came about because you cannot replicate data perfectly. it 
carne about because the instrument you bought yesterday does not turn out to be the same 
one which you bought two years ago and you thought it would make the same 
measurement while you should know better that the real world would tell you that "Why 
do you expect things to be perfect?". 

Then Dr Kramer asked why is the "Real World" box only in the three bottom layers. to 
which Professor Rechtin replied that that is where it shows up. You are beautifully 
abstracting. analyzing. you think you should know all the parameters. you think you 
have done all the different things you needed. you think you have collected all the data 
you are supposed to do. but, when you get to the bottom layers. guess what: you try to 
make the thing but it will not work. Your can find. for example. that you have designed 
something to work beautifully but not to be built The Australians know that very well 
indeed. They have a huge auditorium in Sidney. and it was designed to work but nobody 
could figure out how to build it, unless they do another complete building first. pile this 
one on top of it and then remove the inside. Expensive and elegant: two whole buildings. 
They never designed it to be built You can easily construct mechanical devices that will 
work but that you cannot make. You can design something which has two little pins 
coming out each side to connect to little holes. but the two little holes are in a rigid 
structure and the device with the pins is also a structure and you cannot put the pins in the 
holes! If you can only put them in the holes you have a marvellous device. but you 
cannot put the thing in. That is the "real world". 

Then Dr Aho asked for more clarification of the box named "Client Needs & Resources". 
The software people call these things the non-functionals. All the rest is supposed to be 
functional. but those are the non-functionals. What they mean is that the specification 
which cannot be strictly functional. such as performance. they call it non-functional. 
Professor Rechtin remarked that non-functional sounds to him like "disfunctional". But 



VI . 35 

what these things really are, are the Imperatives of the clients, that is what the clients are 
interested in. So, reliability is whatever you can get. If you ask them: "Do you have a 
reliability specification for your instrument?" . They SaY: "No, we build the best 
instrument that we can at a reasonable cost and reliability is whatever turns out to be.". 
Well , a customer does not think in those terms. He wants to know whether it works or 
not, if it works under these conditions and for how long. 

Later, during the lecture, Professor Randell questioned Professor Rechtin how much 
commonality (terminology, people, how people think and so on) there is actually between 
the aerospace system that Professor Rechtin was using as the main example in his lecture 
and other systems, such as the railway system. Then Professor Rechtin answered that 
one of the famous stories about aerospace and railways is that when we fIrSt began to get 
into satellites, a very famous person in communications and part of AT & T Systems said 
"We do not intend to be the American Association of Railroads in the era of airplanes. ", 
by which he meant "We do not intend to be American Association of Ground-Wires at the 
time of satellite communications.". So the Bell Systems marched very smartly into the 
satellites with their own particular ideas, with their own carriers. They wanted to say "We 
are not the ground carrier, we are in communications.". And so, the tie between railroads 
and aeroplanes is that we are in the business of transponation. Then, of course, there are 
similarities. But if you insist that railroads consist of iron and rails while aeroplanes 
consist of wings and tires they do not look alike. Putting it in another way, if you go up 
in the level of abstraction, you will probably see most of the similarities, for in the 
abstract we can talk about transponation, in the abstract we can talk about architecting 
whether it is hardware or software or social systems or whatever. And you start to see the 
similarities in the abstract level. At the detailed level: no, much less so. But at the abstract 
level we have a good chance, and that is where most of the bridges can occur between 
systems and software: at the abstract level. If we try to get too detailed we will get into 
the real world of each, and that is for the specialist in each. But the sinnilarities tend to be 
at the higher levels of the abstractions and I think that is one of the major bridges, and 
architecting is a very abstract thing. So, it is a good chance where we can come together, 
by talking about it and trying to understand what we mean by some of these more abstract 
terms. And, of course, we will not see them in exactly the same way. But if you ask how 
do we feel about it, we might be very close. For example, software really in many 
applications "is" the system. There is not much else; there is the hardware where you put 
it on, but the name of the game is "software" . But you do not need to go very far until 
you get into real-time systems, and real-time software now is the system because you are 
involving interaction, you are involving human being, you are involving many other 
aspects, and real-time software is quite different from what we say "old batch 
processing" . 



VI. 36 




