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Abstract. Computing a user-task assignment for a workflow coming
with probabilistic user availability provides a measure of completion rate
or resiliency. To a workflow designer this indicates a risk of failure, espe-
cially useful for workflows which cannot be changed due to rigid security
constraints. Furthermore, resiliency can help outline a mitigation strategy
which states actions that can be performed to avoid workflow failures. A
workflow with choice may have many different resiliency values, one for
each of its execution paths. This makes understanding failure risk and
mitigation requirements much more complex. We introduce resiliency
variance, a new analysis metric for workflows which indicates volatility
from the resiliency average. We suggest this metric can help determine
the risk taken on by implementing a given workflow with choice. For
instance, high average resiliency and low variance would suggest a low
risk of workflow failure.

Keywords: Workflow Satisfiability Problem, Quantitative Analysis, Re-
siliency Metrics

1 Introduction

Many business domains including finance, healthcare and eScience use the con-
cept of workflow to efficiently orchestrate their everyday business processes [5,
14, 15]. Although definitions may vary, workflows typically consist of tasks (the
work) and ordering conditions (the flow) [1]. Completing every execution, or in-
stance of a workflow means assigning each task to a user in accordance with
required security constraints. Often these are enforced by regulations ensuring
only users with correct capabilities are matched with appropriate tasks whilst
limiting data access and reducing the threat of collusion and fraud [7, 17].

Finding a user assignment for every task such that all security constraints
are met is a well studied problem, known as the workflow satisfiability problem
(WSP) [9, 29]. The WSP has been shown to be NP-hard, meaning every com-
bination of users to tasks may have to be tried before finding an assignment
that satisfies a workflow. The WSP assumes all users will be available during
execution, however periodic user unavailability at runtime means a satisfiable
workflow at design time may become unsatisfiable during its operation.



In cases where no valid user is available for a specific task assignment, the se-
curity constraints inadvertently block a workflow from completing. Any available
users are either not permitted to perform the task, or are permitted but can-
not do so due to constraints with previously executed tasks. Without violating
the security policy, the alternative is to terminate early thus causing a workflow
failure. Forcing early termination of a workflow may bring heavy operational
penalties in terms of monetary costs, lost productivity and reduced reputation.
In practice, blocked workflows are typically managed by performing mitigating
actions which facilitate a completable workflow, often essential in healthcare and
other critical domains where failure tolerance is small. For example, it may be
that authorising a security override (e.g. break glass [24]) has less long-term im-
pact than allowing the workflow to fail. Elucidating permitted mitigation actions
to be taken if a workflow becomes blocked forms a workflow mitigation strategy.

When designing workflows it is favourable to predict the risk of workflow
failure and understand requirements, in terms of actions, impact and cost of
a suitable mitigation strategy. This is especially important for workflows com-
ing with rigid security constraints that cannot be changed at design time. One
method is to consider the workflow resiliency problem, an extension of the WSP
that looks to find an assignment to satisfy a workflow even when some users be-
come unavailable [29]. The quantitative approach to this problem taken in [20]
allows a workflow’s resiliency to be expressed as a measure of expected comple-
tion rate. This value in turn indicates the risk of workflow failure, and therefore
the likely need to perform mitigation actions.

In [20], the authors consider analysing the resiliency of workflows with only
sequential and parallel control patterns such that each has a single execution
path. Computing the resiliency for workflows of this form provides a singular
comprehensible indicator of failure risk. Low failure risk (high resiliency) would
imply an infrequent need to perform any mitigation actions. This could favour a
mitigation strategy consisting of short-term, low cost actions such as a security
constraint emergency override. High failure risk (low resiliency) would suggest
a broader strategy including more permanent yet costly mitigation actions such
as staff training and repealing user unavailability.

This paper considers workflows with gateways, or choice co-ordinators such
that multiple execution paths exist that can be taken at runtime to complete
a workflow, and where each path may come with a different resiliency value.
Understanding risk failure and mitigation strategy requirements of such work-
flows can be much more complex, especially when a workflow contains hundreds
if not thousands of execution paths. Taking the resiliency average, or expected
resiliency alone may be a misleading indicator of failure risk, especially when a
workflow contains paths of both very high and very low resiliency.

We introduce resiliency variance, a new metric for workflow failure risk anal-
ysis that indicates overall resiliency variability or volatility from the resiliency
average. In business terms, volatility is typically viewed as a measure of risk; a
variance metric helps determine the risk an investor might take on when purchas-
ing a specific asset [11]. Similarly, resiliency variance could provide a workflow



designer with an indicator of failure risk taken on by implementing a given work-
flow with choice. This could also be useful for predicting a suitable mitigation
strategy. For example, a workflow with high expected resiliency and low variance
indicates low failure risk and mitigation cost whilst high variance would suggest
a much higher failure risk and mitigation cost.

We give an overview of workflow resiliency related work in Section 2 whilst
Section 3 defines a workflow with choice. Section 4 discusses workflow resiliency
and its calculation before introducing resiliency variance and show how it is cal-
culated using a real-world university based purchase request workflow. Section 5
provides a discussion on workflow mitigation techniques and how resiliency vari-
ance could inform mitigation strategy choice. Concluding remarks are given in
Section 6.

2 Related Work

A number of previous studies on workflow resiliency and its enhancement appear
in the literature. Wang et al. took a first step in [29] to quantify resiliency and
declare a workflow as k resilient if it can withstand up to k absent users in all
instances. In [20] Mace et al. consider workflows that are not always k resilient
and provide a measure of quantitative resiliency indicating how much a workflow
is likely to terminate for a given security policy and user unavailability model.
This approach illustrates a trade-off exists between aspects such as success rate,
expected termination point and computation time.

Basin et al. in [4] overcome scenarios where no valid user-task assignment
exists by reallocating roles to users at runtime to satisfy security constraints. A
new assignment of users to roles is calculated with the minimum cost to risk,
administration and maintenance. This is feasible in certain business domains
but may have limited application in workflows where roles are more specialised;
for example is adding an untrained user to the role doctor to satisfy a security
policy better than overriding it and enabling a constrained but qualified doctor?

Wainer et al. consider in [28] the explicit overriding of security constraints in
workflows, by defining a notion of privilege. In [8] Brunel et al. suggest a security
policy may still be satisfied even though some security constraints may be vio-
lated. This is considered acceptable by defining additional conditions that apply
in the case of violation that must be satisfied to comply with the security policy.
Bakkali [2] suggests enhancing resiliency through delegation and the placement
of criticality values over workflows. Delegates are chosen on their suitability but
may lack competence; this is considered the ‘price to pay’ for resiliency. As del-
egation takes place at a task level it is not currently clear whether a workflow
can still complete while meeting security constraints. In [10] Crampton et al.
suggest a mechanism that can automatically respond to the absence of users by
delegating a task appropriately when no qualified user is available to perform it.

Current literature does not fully address the issue of workflows that must op-
erate but may not be resilient in every instance. Although many approaches have
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been suggested in isolation, a range of different remediation options including
policy overrides are necessary for a more optimal solution.

3 Workflow

In general, a workflow consists of a set of tasks which can be executed following
some constraints: some tasks must be executed before others, some tasks can
be executed in parallel, some tasks can be executed instead of others. There
exist several definitions for workflows in the literature, for instance as a partial
ordering of tasks [9] or as a directed graph [27]. The aim of the work presented
here is to study the resiliency of workflows with choice, using the notion of
resiliency introduced in [20], where a workflow is defined as a set of users, a
partially ordered set of tasks and a security policy.

However, this definition does not allow for choice, i.e., for having different
paths in a workflow according to the evaluation of some choices. For instance, a
workflow managing the purchasing process might have different tasks based on
the cost of the purchase. In this section, we first give an inductive definition for
a workflow with choice inspired from [16], and we show how it can be reduced
into a definition compatible with [20].

3.1 Task Structure with Choice

A task structure is built upon two sets: a set T of atomic tasks and a set C
of atomic choices. Intuitively, the former set represents each action that can be
performed, while the latter represents the different points where the workflow can
branch. The set TSC of task structures with choice is then defined inductively:

– Given a single task t ∈ T , t also belongs to TSC ;

– Given two task structures ts1 ∈ TSC and ts2 ∈ TSC , ts1 → ts2 also belongs
to TSC , and corresponds to the sequential execution of ts1 followed by ts2;

– Given two task structures ts1 ∈ TSC and ts2 ∈ TSC , ts1 ∧ ts2 also belongs
to TSC , and corresponds to the parallel ordering ts1 and ts2;

– Given a choice c ∈ C and two task structures ts1 ∈ TSC and ts2 ∈ TSC ,
c : ts1 ? ts2 also belongs to TSC , and corresponds to the task structure ts1
if c evaluates to true, and to ts2 otherwise.



Running example. As a running example to illustrate the different concepts
presented here, we define T = {t1, t2, t3, t4, t5, t6}, C = {c1, c2} and

ts1 = t1 → [c1 : [t2 → [c2 : t5 ? t4]] ? t3]→ t6

Note that for the sake of simplicity, we do not consider in the running example
any parallel composition. We give a graphical representation of ts1 in Figure 1
where tasks are represented as circles and choices as diamonds. In order to repre-
sent the end of a choice, we use the empty diamond symbol, and in this particular
example, both choices c1 and c2 finish at the same point. The directed arcs rep-
resent the ordering of task execution.

It is worth pointing out that in the graphical notation used in Figure 1,
the choice nodes correspond to or-nodes and the empty diamond to a merge
coordinator in [27].

3.2 Task Structure Reduction

At runtime, the choices in a task structure are resolved, and only the corre-
sponding paths are executed. We adopt here an approach where we do not know
how each choice is going to be resolved at runtime, and we therefore consider
beforehand all possible solutions. Intuitively, we want to reduce a task structure
with choice to one without choice, for which all tasks should be executed.

Hence, we write TS for the subset of TSC corresponding to task structures
without choice, and we model the reduction process through the function red :
TSC × ℘(C) → TSC , such that, given a task structure ts and a set of choices
γ ⊆ C, red(ts, γ) corresponds to the reduction of ts where each choice in γ is
evaluated as true, and any other choice as false. More formally:

red(t, γ) = t

red(ts1 → ts2, γ) = red(ts1, γ)→ red(ts2, γ)

red(ts1 ∧ ts2, γ) = red(ts1, γ) ∧ red(ts2, γ)

red(c : ts1 ? ts2, γ) =

{
red(ts1, γ) if c ∈ γ
red(ts2, γ) otherwise

All possible instances without choice of a task structure with choice can be
defined by:

ins(ts) = {ts′ ∈ TS | ∃γ ⊆ C red(ts, γ) = ts′}

A task structure without choice can be converted to a set of tasks with a
partial ordering, thus allowing us to reuse existing corresponding techniques.
Given a task structure ts, we first write τ(ts) for the set of tasks appearing in ts
(which can be straightforwardly defined by induction over ts). We then define
the function ord : TS → ℘(T × T ), which, given a task structure without choice



ts, returns the ordering relation over the tasks in ts.

ord(t) =∅
ord(ts1 ∧ ts2) =ord(ts1) ∪ ord(ts2)

ord(ts1 → ts2) ={(t1, t2) | t1 ∈ τ(ts1) ∧ t2 ∈ τ(ts2)}
∪ ord(ts1) ∪ ord(ts2)

Running example. The possible instances of ts1 are:

– t1 → t2 → t5 → t6 (corresponding to γ = {c1, c2});
– t1 → t2 → t4 → t6 (corresponding to γ = {c1});
– t1 → t3 → t6 (corresponding to γ = {c2} and γ = ∅).

Since these instances do not contain any parallel structure, the ordering for each
instance is simply the total ordering of the tasks following the sequence.

3.3 Security Policy

Next we define a set of users U that comes with a security policy over the set of
tasks T . In general, a security policy is a triple p = (P, S,B) where:
– P ⊆ U × T are user-task permissions, such that (u, t) ∈ P if, and only if u

is allowed to perform t.
– S ⊆ T × T are separations of duty, such that (t, t′) ∈ S if, and only if the

users assigned to t and t′ are distinct.
– B ⊆ T ×T are bindings of duty, such that (t, t′) ∈ B if, and only if the same

user is assigned to t and t′.
A workflow therefore consists of a set of tasks, with an ordering relation over

the tasks, a set of users, and a security policy.

Definition 1. A workflow is a tuple w = (ts, U, p), where ts is a task structure,
U is a set of users, and p is a security policy.

Note we assume ts to be equivalent to an inducement of the task manager τ
given an initial task t0 ∈ T from the definition of workflow given in [20]. Given
a workflow w = (ts, U, p) and a set of choices γ ⊆ C, we abuse the notation and
write red(w, γ) for the workflow w′ = (red(ts, γ), U ′, p′), where p′ corresponds to
p restricted to tasks appearing in red(ts, γ) and U ′ corresponds to U restricted
to users appearing in p′. Similarly, we write ins(w) for the set of workflows w′

such that there exists γ ⊆ C satisfying w′ = red(w, γ).

Running example. We now consider a set of users U1 = {u1, u2, u3, u4} and
a security policy p1 = (P1, S1, B1) that states:
– P1 = {(u1, t1), (u2, t1), (u2, t2), (u3, t2), (u1, t3),

(u3, t3), (u1, t4), (u4, t4), (u3, t5), (u4, t5), (u1, t6),
(u4, t6)}

– S1 = {(t1, t2), (t1, t6), (t2, t5), (t2, t6), (t3, t6}
– B1 = {(t4, t6)}

Figure 2 illustrates p1, where the dotted arrows labelled ‘ 6=’ and = signify the
constraints given in S1 and B2 respectively. A label [um, ..., un] states the users
that are authorised by P1 to execute ti.



4 Workflow Resiliency

Given a workflow w = (ts, U, p), we need to assign tasks in ts to users in U
in order to execute them, while respecting the policy p. If ts contains some
choice elements, it is not strictly necessary to assign all tasks, only those that
will be chosen at runtime. However, as mentioned above, we assume here that
we have no control over the choices, and therefore we cannot know beforehand
which subset of tasks must be assigned. Hence, we reduce the problem of task
assignment for a workflow with choice to considering the task assignment of all
possible instances without choice, thanks to the function red. In this section, we
first describe the resiliency problem for workflows without choice, following the
existing literature, and we then lift the problem to workflows with choice.

4.1 Resiliency without Choice

Given a workflow without choice, finding a complete assignment that satisfies all
the security constraints is known as the Workflow Satisfiability Problem (WSP),
and we refer for instance to [9, 29] for further reading on this problem.

Solving the WSP assumes any u ∈ U will always be available for every
instance of a workflow. However in practice, sickness, vacation, heavy workloads,
etc., can cause users to periodically be unavailable for task assignments. It is then
important to find a valid and complete assignment that maximises the chance
of a workflow w to finish: finding an assignment such that w will likely finish 9
out of 10 cases is clearly better than choosing one where w will likely finished
only 1 out of 10 cases. This is called the resiliency problem, whether a workflow
w can be satisfied even when some users become absent.

User unavailability in workflows was introduced by Wang and Li [29], who
considered a somewhat binary approach where users are either available or not. A
workflow is classified as k resilient if the workflow can still be satisfied regardless
of which k users become absent. In [20], Mace et al introduced probabilistic user
availability and showed that computing the optimal policy of a Markov Decision
Process (MDP [6]) is equivalent to finding an assignment that maximises a value
function returning the probability of the workflow w to finish. We refer to [20]
for the detail of this approach, and given a workflow without choice w, we write
res(w) ∈ [0, 1] for its resiliency. Our main contribution in this paper consists in
adapting this measure to workflows with choice.

It is worth pointing out that understanding when users will and will not
be available is an obvious requirement when calculating resiliency, which may
be deduced from a mixture of operational logs, behavioural analysis and user
submissions (known and tentative absences). A key influential aspect is how
the unavailability of users is modelled in the corresponding MDP [21]. In this
paper we consider a dynamic user availability model meaning any user who
becomes unavailable for a task may become available again at any step later in
the workflow.



Table 1: Running example probabilistic
user availability models

AM1 AM2

u1 u2 u3 u4 u1 u2 u3 u4

t1 0.95 0.90 0.96 0.94 0.95 0.90 0.96 0.94
t2 0.88 1.00 0.90 0.97 0.88 1.00 0.90 0.97
t3 0.85 0.77 0.99 0.89 0.85 0.77 0.85 0.89
t4 0.40 0.88 0.89 0.52 0.78 0.88 0.89 0.80
t5 0.93 0.87 0.96 0.96 0.93 0.87 0.82 0.82
t6 0.98 0.94 0.98 0.98 0.98 0.94 0.98 0.98

Table 2: Running example
resiliency measures

AM1 AM2

res(w11) 0.89 0.76
res(w22) 0.48 0.74
res(w33) 0.92 0.79
expR(w1) 0.76 0.76
varR(w1) 0.0403 0.0004

4.2 Resiliency with Choice

We now consider adapting the resiliency measure for a workflow without choice
to a resiliency measure for a workflow with choice using the aid of our running
example.

Running example. We consider a workflow w1 = (ts1, U1, p1) such that ins(w1) =
{w11, w22, w33} where:
– w11 = (t1 → t2 → t5 → t6, U11, p11)
– w22 = (t1 → t2 → t4 → t6, U22, p22)
– w33 = (t1 → t3 → t6, U33, p33)

We consider two different probabilistic user availability models AM1 and AM2,
given in Table 1 and assume that AM2 is the result of escalation type mitiga-
tion actions carried out on AM1, for instance by cancelling user vacations (see
Section 5.1). An entry ti× ui is the probability of user ui being available for the
assignment of task ti. The resiliency of each wii ∈ ins(w1) is given in Table 2.

Resiliency Extrema Finding the minimal resiliency for a workflow with choice
w indicates which w′ ∈ ins(w) will give the lowest success rate for w if executed.
This can be interpreted as the worst case, or the instance in w with the highest
failure risk. On first glance this indicates which parts of w need the most atten-
tion in terms of mitigation. For instance, in our running example, w1 is most
likely to fail when w22 is executed which gives the minimal resiliency, 0.48 and
0.74 under AM1 and AM2 respectively. Imagine now that under AM1, w22 has
a low probability of execution, e.g., 0.01, or 1 execution in 100 cases whereas
w33 with 0.92 resiliency has a high execution probability, e.g., 0.80, or 80 in 100
cases. In general, the resiliency for w1 will therefore be much higher meaning a
costly mitigating strategy for the infrequent, low resiliency case may not be cost
effective.

A bound on the expected success rate can be placed on w by calculating both
the maximal and minimal resiliency for w. In our running example under AM1,
w1 has a large bound with an expected finish rate of between 0.48 (w22) and 0.92
(w33). Under the mitigated AM2, w1 has a much smaller bound such that the
expected finish rate is between 0.74 (w22) and 0.79 (w33). The resiliency bound



can be a useful resiliency measure when all w′ ∈ ins(w) have an equiprobable
chance of being executed. If however under AM1, w33 has a low execution prob-
ability of 0.01 whilst w22 has a high execution probability of 0.8 then in general
the resiliency achieved will tend towards the minimal value of 0.48. Placing a
bounds on the resiliency in this case becomes a misleading measure of resiliency
to the workflow designer.

Resiliency Distribution Given a workflow with choice w, calculating the re-
siliency for every possible instance w′ ∈ ins(w) provides the full resiliency dis-
tribution for w. This can enable the workflow designer to identify instances of
low resiliency, and therefore those needing more extensive mitigation. A toler-
ance threshold for resiliency may exist for w, deemed acceptable when every
instance w′ has a resiliency equal to or more than the threshold, in other words
the probability that every w′ meets the threshold is 1. In our running example
we assume a resiliency threshold of 0.50 and for simplicity, an equiprobable exe-
cution model for all w′ ∈ ins(w1) where the execution probability of w′ is 0.33.
A more complex probabilistic model could easily be imagined, and we leave such
cases for future works. Under AM1 the probability of w1 meeting this threshold
is therefore 0.66 (unacceptable), whilst under the mitigated AM2 the probability
is now 1 (acceptable).

Illustrating a comparison of risk failure between a pre and post mitigated
workflow to business leaders using resiliency distribution may be complex, espe-
cially when they contain hundreds if not thousands of execution paths. It may
be more useful for a workflow designer to provide a singular, easy to understand
measure of resiliency for a workflow with choice.

Expected Resiliency We now assume a probability function prob : W → [0, 1],
which given a workflow without choice w′ ∈ ins(w), returns the probability of w′

being executed. The expected resiliency indicates the likely success rate across
every instance in a workflow with choice w, calculated as the average resiliency
of all w′ ∈ ins(w). We define the function expR : W → [0, 1], which given a
workflow with choice w returns the expected resiliency of w.

expR(w) =
∑

w′∈ins(w)

prob(w′).res(w′)

In our running example, assuming prob(w′) = 0.33 for all w′ ∈ ins(w1), the
expected resiliency is 0.76 for w1 under both AM1 and AM2, shown in Table
2. This in turn indicates an expected failure rate for w1 of 0.24. Under AM1

with an equiprobable execution model means the expected resiliency of 0.76 is
not assured with every execution of w1. Each time the instance w22 is executed,
the probability of w1 terminating successfully is only 0.48. This means roughly
half of these instance executions will cause w1 to fail. When executing w11 and
w33 the actual resiliency is much higher than the expected value. Clearly in this
case the expected resiliency alone gives a misleading measure of resiliency for a



workflow with choice, in other words the expected resiliency cannot actually be
expected in every case.

Under the mitigated model AM2, the expected resiliency is now roughly
attained whichever w′ ∈ ins(w1) is executed. In this case the expected resiliency
measure alone is arguably enough to indicate the true failure risk of w1. In other
words, a resiliency of ≈ 0.76 can be expected with every execution of w1. This
remains so even when the probabilistic execution model for all w′ ∈ ins(w1) is
not equally weighted. Note that to achieve this the resiliency of w11 and w33

under AM1 has been reduced to 0.76 and 0.79 respectively.

Resiliency Variance The resiliency variance is a measure of how spread out
a distribution is, or the variability from the expected resiliency of all instances
in a workflow with choice w. A resiliency variance value of zero indicates that
the resiliency of all w′ ∈ ins(w) are identical such that the expected resiliency
alone will give a true indicator of risk failure. All resiliency variances that are
non-zero will be positive. A large variance indicates that instances are far from
the mean and each other in terms of resiliency, whilst a small variance indicates
the opposite. As discussed in the Introduction, the resiliency variance can give
a prediction of volatility or failure risk to a workflow designer taken on when
implementing a particular workflow with choice. To quantify the resiliency vari-
ance measure we define a function varW : W → R, which given a workflow with
choice w returns the resiliency variance of w.

varR(w) =
∑

w′∈ins(w)

prob(w′).(res(w′)− expR(w))2

The resiliency variance for our running example w1, calculated under avail-
ability models AM1 and AM2 is given in Table 2. An equiprobable execution
model is again used for simplicity. Under AM1 a resiliency variance of 0.0403 is
calculated, equivalent to a large standard deviation of 0.20 (

√
varR(w1)). Under

the mitigated AM2 the resiliency variance has been reduced to 0.0004, equivalent
to a much smaller standard deviation of 0.02 from the expected resiliency. Here
we have a decrease by a factor of 10. Clearly this indicates in this case that all
instances of w1 under AM2 have a probability of terminating successfully close
to the expected resiliency of 0.76.

The former case (AM1) indicates that instances in w1 can have a large spread
in terms of resiliency despite having the same expected resiliency as the latter
case (AM2) coming with a small spread, or variance. Under AM1, the results
show that instances exist in w1 with much lower and higher probabilities of
terminating successfully than the expected resiliency for w1. The workflow w1

can be considered volatile or high risk as it has a high risk of failing if one such
instance with low resiliency is executed. Coupled with expected resiliency, re-
siliency variance can provide an easy to understand measure of workflow risk
failure and allow workflow designers to quickly compare similar complex work-
flows (e.g., pre and post mitigation) to help them predict a suitable mitigation
strategy.



Table 3: Resiliency measures for purchase request workflow

AM3 AM4

minR(w2) 0.48 0.55
maxR(w2) 0.96 0.83
expR(w2) 0.67 0.67
varR(w2) 0.0183 0.0052

4.3 Purchase Request Workflow

In this section we calculate resiliency measures including resiliency variance for
a purchase request workflow w2 that forms part of a real-life procurement pro-
cedure used by a large Australian-based university1. The workflow consists of 18
atomic tasks and 5 atomic choices, 4 users, and a security policy with 9 sepa-
ration of duty constraints. The workflow task structure consists of 18 instances,
i.e., 18 possible execution paths.

To calculate the resiliency measures we encode w2 within the probabilistic
model checking tool PRISM, which enables the specification, construction and
analysis of probabilistic models such as MDPs [19]. PRISM is an intuitive choice
as it can model both probabilistic and non-deterministic choice, and gives an
efficient way to solve an MDP. For a systematic encoding of a workflow in PRISM
and the mechanisms to compute the resiliency measure we refer the reader to
the following technical report [22].

Resiliency measures for w2 are given in Table 3 under two probabilistic avail-
ability models AM3 and AM4. We assume AM4 results from mitigation carried
out on AM3. Measures calculated are minimal and maximal resiliency repre-
sented as minR(w2) and maxR(w2) respectively, expected resiliency and re-
siliency variance. The expected resiliency is the same for w2 under both AM3

and AM4 yet the resiliency variance is reduced by a factor of 3.5 under the latter,
indicating w2 now has a lower risk of failure.

5 Mitigation Strategy

In this section we give an overview of the main techniques discussed in the
literature that could be implemented within a workflow mitigation strategy to
overcome situations when no valid user-task assignment exists. These mitigation
actions are categorised into two classes, long-term actions and emergency actions.

5.1 Long-term Actions

Long-term actions can help raise the resiliency of a workflow by providing a
secure solution that does not involve having to violate the security policy or
change the task structure [25, 26]. Long-term actions can also often provide a
more permanent solution to parts of a workflow that commonly becomes blocked.

1 http://www.fin.unsw.edu.au/files/PP/Purchase Order Procedure.pdf



Long-term actions arguably take time and can be expensive in monetary terms
to complete, yet the long-term benefits can be high. Those actions of interest
include:

– suspension: a workflow is suspended until a user becomes available. This can
be appropriate if deadlines are not important and/or there is some assurance
of future availability. Essentially a task is assigned to a user and executed
when the user becomes available.

– escalation: the probability of a valid user being available for a task is in-
creased. A user may be asked to return from vacation or come in on their
day off, or they may need to suspend another task they are currently exe-
cuting. We assume the use of this action in our running example to mitigate
user availability model AM1, thereby creating AM2.

– training: a user’s capabilities are raised to an acceptable level before granting
permission to perform a task.

– change policy [3, 4] - security constraints are removed or changed (e.g., re-
allocating roles) which can take time and may need to be done multiple
times if a workflow is to complete. Changes may not be possible due to legal
requirements or impractical if users do not have the correct skills.

5.2 Emergency Actions

Emergency actions can help raise the resiliency of a workflow by overriding the
security policy or changing the task structure. Such actions provide a quick-fix
to a workflow that becomes blocked but do not offer any permanent solution to
parts of a workflow that commonly becomes blocked. A less secure solution is
provided than long-term actions that may also impact the output quality of the
workflow if the task structure is indeed changed. Emergency actions are arguably
quick and cheap in monetary terms to complete, yet the long-term benefits can
be low. A distinction is made between overriding which implies some control is
in place over who and how policies can be broken while violation is unsolicited.
Those actions of interest include:

– delegation [2, 13, 18]: if user is unavailable they may delegate a task assign-
ment to a peer or subordinate who would not normally be authorised to
perform the task. This overrides the user-task permissions but can result in
lower standards and higher risk.

– break glass [23]: certain users are given the right to override a security con-
straint to gain privileges when the assigned user is unavailable, set up with
special accounts. Justification is typically sought after access is granted.

– skipping: a task is bypassed and executed at a later time, although out of
sequence. This is similar to suspension although other tasks are executed
while waiting for a user to become available.

– forward execution: the workflow instance is rolled back [12] until another as-
signment path can be taken which bypasses the invalid user-task assignment.



5.3 Strategy Selection

Implementing a suitable mitigation strategy is important to reduce a workflow’s
chance of failure, especially one with both a high expected success rate and rigid
security constraints. Ultimately a favourable mitigation strategy will give a high
expected resiliency and a low resiliency variance. Clearly we are not in a position
to state which and when particular mitigation actions should be implemented as
part of a mitigation strategy as this is highly context dependent. We do however
offer some discussion on this matter and show how the resiliency measures for a
workflow with choice discussed in Section 4.2 could be useful in this regard.

It may be the case that a mitigation strategy can consist of only long-term
actions, especially where security is paramount and no emergency actions are
permitted. Alternatively, finishing a workflow in a timely manner may be the
priority meaning a mitigation strategy consists of only emergency actions. A
third option is a mitigation strategy consisting of both long-term and emergency
actions that is fully comprehensive and means the most appropriate option is
always available.

Although long-term mitigation actions can be costly in both time and mon-
etary terms, it may be the case that such actions need only be performed once.
For instance, training a staff member once for a particular task means they can
perform the task in all future executions when necessary. Implementing long-
term mitigation actions for all instances of low resiliency would seem a sensible
option however if some or all low resiliency instances have a very low probability
of execution, this approach may not be cost effective. Emergency actions alone
may be acceptable. If on the other hand emergency actions are implemented for
an instance with a high probability of execution yet low resiliency it is likely
that these often less secure actions will need to be performed multiple times.
Long-term actions may be more appropriate here.

Using the minimum resiliency of a workflow with choice may lead to over mit-
igation, especially if the lowest resiliency instances are infrequently executed. Us-
ing the maximum resiliency may produce the opposite effect such that a workflow
is under mitigated. Workflows with high resiliency variance and low resiliency
variance can have the same measure of expected resiliency meaning this mea-
sure alone may be misleading. The expected resiliency and resiliency variance
together can inform mitigation strategy choice as follows:
– high resiliency and high variance: a combination of both action types with a

higher proportion of emergency actions
– low resiliency and high variance: a combination of both action types with a

higher proportion of long-term actions
– high resiliency and low variance: emergency actions
– low resiliency and low variance: long-term actions

6 Conclusion

It is important that a workflow designer can predict the risk of failure before
implementing a workflow, especially if its design must include rigid security con-



straints. In [20] the probability of finding a user assignment for all tasks in a
workflow without choice provides a measure of completion rate or resiliency.
We extend this approach by considering workflows with choice which may come
with multiple resiliency values, one for each execution path. We consider com-
puting different resiliency measures including resiliency variance which indicates
volatility from the resiliency average. We suggest this metric can help predict
the risk taken on when implementing a given workflow and help determine suit-
able mitigation actions which should be executed when no valid user assignment
exists for a workflow task.
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